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SUMMARY

This thesis addresses three topics in the area of statistics and probability,

with applications in risk management. First, for the testing problems in the high-

dimensional (HD) data analysis, we present a novel method to formulate empirical

likelihood tests and jackknife empirical likelihood tests by splitting the sample into

subgroups. New tests are constructed to test the equality of two HD means, the coef-

ficient in the HD linear models and the HD covariance matrices. Second, we propose

jackknife empirical likelihood methods to formulate interval estimations for impor-

tant quantities in actuarial science and risk management, such as the risk-distortion

measures, Spearman’s rho and parametric copulas. Lastly, we introduce the theory of

completely mixable (CM) distributions. We give properties of the CM distributions,

show that a few classes of distributions are CM and use the new technique to find

the bounds for the sum of individual risks with given marginal distributions but un-

specific dependence structure. The result partially solves a problem that had been a

challenge for decades, and directly leads to the bounds on quantities of interest in risk

management, such as the variance, the stop-loss premium, the price of the European

options and the Value-at-Risk associated with a joint portfolio.

xii
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CHAPTER I

INTRODUCTION

I would use the word amazing to describe what I feel about the rapid and fertile

development of probability and statistics during the recent few decades. As a person

who loves mathematics as well as the real world, I long for the research with both

theoretical depth in mathematics and practical influence in our lives. I found those

interests perfectly combined in the study of statistics and risk management, from

which this dissertation is finally generated.

The dissertation addresses three topics in the area of non-parametric statistical

inference, multivariate dependence structures and their applications in risk manage-

ment. As such, it consists of three main chapters, each of which addresses one topic.

Chapter II is dedicated to new empirical likelihood tests in high-dimensional data

analysis. Four different classic test problems in the high-dimensional framework are

considered: testing the equality of the mean of two samples (Section 2.2), testing the

coefficient in a linear model (Section 2.3), testing the covariance matrix and testing

the banded structure of the covariance matrix (Section 2.4).

Chapter III is dedicated to the applications of the jackknife empirical likelihood

interval estimation to some quantities of interest in risk management, including the

risk-distortion measures (Section 3.2), Spearman’s rho (Section 3.3) and parametric

copulas (Section 3.4).

Chapter IV is dedicated to the theory of a new class of probability distributions,

called the completely mixable distributions. The definition, properties and main the-

orems about this new class are introduced. The new technique developed with this

concept can be used to solve a series of problems in the Fréchet class and answer some

1
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questions in risk management.

This chapter, Chapter I, serves as the introduction. The existing statistical meth-

ods of likelihood ratio functions are reviewed in Section 1.1. The theory of copulas

is introduced in Section 1.2. The problems of the Fréchet class are introduced in

Sections 1.3.

1.1 Empirical likelihood methods

1.1.1 Parametric likelihood ratio

The parametric likelihood ratio function has become a common knowledge of statistics

graduate students nowadays. Let us first review the definition of the likelihood ratio

function. Throughout this section, let X = (X1, · · · , Xn) be a sample of n i.i.d.

observations from a distribution F0 on Rp, and define the likelihood function

L(F |X) =
n∏
i=1

f(Xi)

for any distribution function F , where f(Xi) is the probability mass or density func-

tion of F at the point Xi, depending on the context. Since we are interested in the

likelihood ratio, the case of having a probability density and the case of having a

probability mass are the treated the same, as long as both the numerator and the

denominator are using the same scale.

When we are interested in a parametric family of distributions {F (θ) : θ ∈ Θ},

where Θ the set of parameters theta, it is called a parametric model. Suppose Θ is a

vector space, and let Θ0 be a subspace of Θ. Define the likelihood ratio function

Λ(Θ0) =
sup{L(F (θ)|X) : θ ∈ Θ0}
sup{L(F (θ)|X) : θ ∈ Θ}

.

The Wilks’ Theorem, presented by Wilks [109], is considered one of the most

important results in the likelihood ratio problems. The theorem states that under

H0 : θ ∈ Θ0 and mild regularity conditions,

−2 log Λ(Θ0)
d→ χ2

q

2
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where χ2
q is the chi-square distribution with q degrees of freedom and q = dimΘ −

dimΘ0. In particular, if Θ0 is the set of one point, i.e. the real value of θ, then

−2 log Λ(Θ0)
d→ χ2

dimΘ.

Likelihood methods are very effective as they can be used to find efficient estima-

tors and to construct tests with good power properties. Since the asymptotic limit

of −2 log Λ(θ) does not depend on the underlying model, the method has great con-

venience in many cases. A likelihood ratio test is a test based on the statistic Λ(θ),

to test H0 : θ ∈ Θ0 against Ha : θ ∈ Θ \ Θ0. By Wilks’ Theorem, a test based on

l(θ) := −2 log Λ(θ) can be easily constructed by rejecting H0 when l(θ) exceeds the

threshold χ2
p(1− α), where χ2

p(1− α) is the 1− α quantile of χ2
p.

1.1.2 Empirical likelihood (EL) methods

The non-parametric version of the likelihood ratio function was first by introduced by

Owen [71, 72]. First (and throughout Chapter II and Chapter III, unless otherwise

notified), let us define the empirical distribution function (EDF) of X as Fn(x) =

1
n

∑n
i=1 I(Xi ≤ x).

As a well-known fact, Fn is the nonparametric maximum likelihood estimator for

the true distribution function F0, i.e.

L(F |X) ≤ L(Fn|X) = n−n (1.1)

for any distribution F and the equality holds only if F = Fn. The study on the EDF

has been extensive; for more information we refer to Shorack and Wellner [94] and

references therein.

(1.1) gives us an opportunity to build an analog to the parametric likelihood ratio

function. Let F be the set of all distribution functions on Rp (recall that X1 takes

value in Rp), and F0 be a subset of F . Then we can define the empirical likelihood

3
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ratio function

Λ(F0) =
sup{L(F |X) : F ∈ F0}
sup{L(F |X) : F ∈ F}

=
sup{L(F |X) : F ∈ F0}

L(Fn|X)

= nn sup{L(F |X) : F ∈ F0}.

Now suppose we are interested in a quantity θ = T (F ), where T is a functional of

F . Let F0(θ) be the set of distributions F satisfying T (F ) = θ. In this case, define

the empirical likelihood ratio function

R(θ) = Λ(F0(θ)) = nn sup{L(F |X) : T (F ) = θ}.

It is obvious that {L(F |X) : T (F ) = θ} is only maximized when F is supported on

the observations X1, · · · , Xn. Then R(θ) can be written as

R(θ) = sup{
n∏
i=1

(npi) : pi = f(Xi), T (F ) = θ}.

It is then straightforward to investigate the limit of R(θ). As one would expect

from Wilks’ Theorem, −2 logR(θ) should go to a chi-square distribution, with the

number of degrees of freedom depending on the difference between F0 and F . This

turns out to be true when T is a linear functional of F . In particular, and as a

good example, for the mean problem T (F ) = E(X1), Owen [72] gives the following

theorem:

Theorem 1.1.1. Let X1, . . . , Xn be independent random vectors in Rp with common

distribution F0 having mean µ0 and finite variance covariance matrix V0 of rank q > 0.

Then l(µ0) converges in distribution to a χ2
q random variable as n → ∞, where

l(µ0) = −2 logR(µ0).

Remark 1.1.1. Note that in the case θ = T (F ) = E(X1), we have

R(θ) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piXi = θ}. (1.2)
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It is seen that θ should lie in the convex hull of the sample (X1, · · · , Xn) to ensure the

existence of a solution to the optimization (1.2). In general, when computing R(θ),

θ should always lie in a convex hull formed by the sample.

The optimization problem in (1.2) can be done by the Lagrange multiplier method.

In program R, there is a package emplik with which people can easily calculate the

likelihood ratio function with given sample. In this thesis, we call a technique using

the empirical likelihood in statistical testing and estimation an empirical likelihood

(EL) method. For details and more information, we refer to Owen [71, 72, 73].

As another significant contribution to the empirical likelihood methods, Qin and

Lawless [82] introduced the estimating equations to the empirical likelihood methods,

making the methods more flexible with different types of model settings. Suppose we

are interested in a parameter θ ∈ Rq associated with the underlying distribution F

through estimating equations E[g(X1; θ)] = 0, where E[g(·)] is a d-dimensional linear

functional of the underlining distribution. Here d and q are the essential dimension

of the functional g and parameter θ respectively, i.e. the components in g or θ are

generated by a set of d or q linearly independent components. The empirical likelihood

function with estimating equations is defined as

L(θ) = sup{
n∏
i=1

pi :
n∑
i=1

pig(Xi, θ) = 0, pi ≥ 0,
n∑
i=1

pi = 1}. (1.3)

Let θ̃ maximize L(θ). Qin and Lawless [82] showed that under mild conditions,

−2 log(L(θ0)/L(θ̃))
d→ χ2

r, where r = d ∨ q and θ0 is the true value of θ.

As a special case, if we are interested in the mean θ, then we can choose G(x; θ) =

x− θ and we will get R(θ) defined in (1.2).

Looking into the proofs in Owen [71, 72], in order to guarantee that R(θ) converges

to a chi-square distribution, one will need the following conditions for some matrix

Σ:
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(L1) CLT,

1√
n

n∑
i=1

g(Xi; θ)
d→ N(0,Σ).

(L2) LLN,

1

n

n∑
i=1

g(Xi; θ)g(Xi; θ)
T p→ Σ.

(L3) Controlled maximum,

max
1≤i≤n

g(Xi; θ) = op(
√
n).

Fortunately, since g(Xi; θ), . . . , g(Xn; θ) are i.i.d., (L1)–(L3) are guaranteed by a finite

covariance matrix Σ of g(Xi; θ). However, this inspired us that as long as (L1)–(L3)

are satisfied, Wilks’ Theorem holds. Thus, the result can be applied with the method

of resampling, where the sample is no longer i.i.d., but (L1)–(L3) still hold. Based on

this observation, we will introduce the jackknife empirical likelihood methods later.

The merits of the empirical likelihood include: the shape of confidence regions

is model-free as it is automatically determined using only the data; the estimation

of the asymptotic variance is avoided; one can easily incorporate information using

estimating equations; it is Bartlett correctable (see DiCiccio, Hall and Romano [29]).

The method of empirical likelihood has been extensively studied in the past few

decades. We refer to the recent review papers Chen and Van Keilegom [17] for a

review of empirical likelihood in regression, and Chen, Peng and Qin [15] and Hjort,

McKeague and Van Keilegom [45] for empirical likelihood in high-dimensional data

analysis.

1.1.3 Jackknife empirical likelihood (JEL) methods

One notable limitation of the empirical likelihood method is that its works poorly

with a nonlinear functional T .

Example 1.1.1. Assume p = 1 and we are interested in θ = E(X1 − EX1)
3. We

cannot write i.i.d. g(Xi; θ) in this case.

6
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In general, the Wilks’ Theorem does not hold when an empirical likelihood method

is applied to nonlinear functionals. To overcome this difficulty, Jing, Yuan and Zhou

[47] proposed a jackknife empirical likelihood (JEL) method for U-statistics to deal

with nonlinear functionals.

The method of jackknife is a resampling method to reduce the variance of a

statistic. The new sample, called the jackknife sample, is constructed by taking away

one of the observations at each time. The jackknife sample is no longer independent,

but under some mild conditions they are asymptotically i.i.d., hence (L1)–(L3) in

a empirical likelihood method can be satisfied. See, e.g., Shao and Tu [93] for an

introduction to the method of jackknife.

For a U-statistic, the procedure in Jing, Yuan and Zhou [47] is to construct a

jackknife sample of the statistic, and then apply the standard empirical likelihood

method for the mean of i.i.d. observations to the jackknife sample:

R(θ) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZi(X; θ) = 0}.

Here the function g(Xi; θ) in (1.3) is replaced by Zi(X; θ), where (Z1, · · · , Zn) is a

d-dimensional jackknife sample, with mean 0. Z1, · · · , Zn are no longer independent,

but they could be asymptotically i.i.d to obtain Wilks’ Theorem,

−2 logR(θ0)
d→ χ2

r,

where r = d ∨ q.

Example 1.1.2. For p = 1, θ = E(X1 − EX1)
3, let

θ̂n =
1

n

n∑
i=1

(Xi −
1

n

n∑
k=1

Xk)
3

and

θ̂n,j =
1

n− 1

n∑
i6=j

(Xi −
1

n− 1

∑
k 6=j

Xk)
3.

7
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Define the jackknife sample as Zi = nθ̂n − (n− 1)θ̂n,i, then

R(θ) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZi − θ = 0}

and R(θ)
d→ χ2

1 under some mild regularity conditions.

Inspired by the conditions used in the standard empirical likelihood method, to

prove that the JEL version of Wilks’ Theorem holds for any statistic, not necessarily

a U-statistic, one needs to verify that the jackknife sample satisfies (R1)–(R3):

(R1) CLT,

1√
n

n∑
i=1

Zi
d→ N(0,Σ).

(R2) LLN,

1

n

n∑
i=1

ZiZ
T
i

p→ Σ.

(R3) Controlled maximum,

max
1≤i≤n

Zi = op(
√
n).

Theorem 1.1.2. (Wilks’ Theorem for JEL.) Assuming (R1)–(R3), then

−2 logR(θ0)
d→ χ2

r

where θ0 is the true value of θ and r = d ∨ q.

Proof follows from standard arguments in empirical likelihood, see e.g. Owen [72].

In this thesis, the above technique will be frequently used. In Chapter II, we will

investigate the use of the empirical likelihood in high-dimensional testing problems.

In Chapter III, we will discuss the applications of the jackknife empirical likelihood

in risk management.
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1.2 Copulas

A copula is a multivariate function which characterizes the dependence structure

among random variables without the information of the marginal distributions. The

technique of using copulas has been very popular in statistics and actuarial science,

see Nelsen [69] for an introduction to copulas. The concept of copulas has become a

common knowledge in the modern research related to dependence structures.

Over the last few decades, researchers in economics, financial mathematics and

actuarial science have introduced results related to the dependence structure in their

own respective fields of interest. Below we list a few examples of multivariate depen-

dence in finance and insurance.

1. Pricing financial derivatives written on several assets.

2. Structured financial products, such as the CDOs.

3. Portfolio selection and hedging.

4. Best and worst scenarios in risk management.

5. Time series analysis and econometrics.

The dependence itself is known to be mathematically mysterious and it can be danger-

ous if misplaced. Many people believe that the methodology of applying the Gaussian

copula to model the dependence is one of the reasons behind the global financial crisis

in 2008-2009; see the well-known article by Salmon [88].

1.2.1 Definition and Sklar’s Theorem

As the copulas are widely used in the study of dependence related problems, in this

section we briefly review the concept of copulas.

Definition 1.2.1. An n-copula C : [0, 1]n → [0, 1] is a function that satisfies the

following properties:

9
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(1) C is grounded, i.e. C(u1, · · · , ui−1, 0, ui+1, · · · , un) = 0 for any 1 ≤ i ≤ n and

uj ∈ [0, 1], j 6= i.

(2) C is n-increasing, i.e. for each hyperrectangle B in In = [0, 1]n the C-volume of

B is non-negative.

(3) For all u ∈ [0, 1], C(1, · · · , 1, u, 1, · · · , 1) = u, where the i-th variate is u and all

the other variates are 1, for any 1 ≤ i ≤ n.

It is easily checked that n-copula C have the following properties:

(i) C(u1, · · · , un) is non-decreasing with respect to ui, i = 1, · · · , n, .

(ii) For all ui, vi ∈ [0, 1], i = 1, · · · , n,

C(u1, · · · , un)− C(v1, · · · , vn) ≤
n∑
i=1

|ui − vi|.

(iii) For 1 ≤ m ≤ n, C(u1, · · · , um, 1, · · · , 1) is an m-copula.

(iv) Let Mn(u1, · · · , un) = min{ui, i ≤ n}, Wn(u1, · · · , un) = max{u1 + u2 + · · · +

un − (n− 1), 0}, for ui ∈ [0, 1], 1 ≤ i ≤ n, then

Wn(u1, · · · , un) ≤ C(u1, · · · , un) ≤Mn(u1, · · · , un).

Mn is called the Fréchet upper bound and Wn is called the Fréchet lower bound.

Note that Mn is a copula for all n, and Wn is a copula only when n = 1, 2.

Remark 1.2.1. The complete names of Fréchet bounds are Fréchet–Hoeffding bounds,

attributed to both Hoeffding [46] and Fréchet [40].

The main property of the copulas was first introduced by Sklar’s Theorem [95].

The theorem shows that a copula itself is a multivariate distribution function, and

it is one-to-one corresponding to a joint distribution when the marginal distributions

are given.

10
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Theorem 1.2.1. (Sklar’s Theorem) Let F be a joint distribution function with

univariate marginal distributions F1, · · · , Fn. Then there exists a copula C such that

F (x1, · · · , xn) = C(F1(x1), · · · , Fn(xn)). (1.4)

If F1, · · · , Fn are continuous, then C is unique.

Conversely, let F1, · · · , Fn be univariate distributions and C be a n-copula, then

F in (1.4) is a joint distribution function with univariate marginal distributions

F1, · · · , Fn.

For the random variables X1, · · · , Xn with joint distribution F and marginal dis-

tributions F1, · · · , Fn, we say the copula of X1, · · · , Xn or the vector (X1, · · · , Xn) is

C if C is defined by (1.4). From Sklar’s Theorem, X1, · · · , Xn are independent if and

only if the copula C of X1, · · · , Xn is C(u1, · · · , un) = u1u2 · · ·un.

Let Fi(x) = x, i = 1, · · · , n we easily obtain that a copula is the joint distribution

function of uniform distributions. This statement is usually regarded as a equivalent

definition of copulas.

Definition 1.2.2. An n-copula is a joint distribution function of n U[0, 1] random

variables.

The following theorem gives the invariant property of copulas under a strictly

increasing transformation of random variables.

Theorem 1.2.2. For strictly increasing transformations Hi, i = 1, · · · , n, The copula

of H1(X1) · · · , Hn(Xn) is identical to the copula of X1, · · · , Xn.

The above theorem allows people to transform any random variables to uniform

random variables and study the copula. This technique is widely used in statistical

inference of copulas, for example, using the rank statistics to estimate or test copulas.

11
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Theorem 1.2.3. For a 2-copula C, for fixed v ∈ [0, 1], ∂
∂u
C(u, v) exists for almost

all u ∈ [0, 1], and

0 ≤ ∂

∂u
C(u, v) ≤ 1.

If we exchange the positions of u and v, the theorem still holds.

For proofs in this section and more details and applications about the copulas, the

readers are referred to Nelsen [69]. Statistical inference for copulas has been studied

extensively. The pseudo maximum likelihood estimator for parametric copulas, pre-

sented Genest, Ghoudi and Rivest [42], is most relevant to the content in Chapter III

of this thesis. Peng, Qi and Van Keilegom [75] proposed a smoothed jackknife empir-

ical likelihood method to construct confidence intervals for a non-parametric copula.

We refer to the references in Genest, Ghoudi and Rivest [42], Embrechts, Lindskog

and McNeil [33] and Nelsen [69] for more information on the theory, applications and

statistical inference of copulas.

1.2.2 Spearman’s rho and Kendall’s tau

A copula contains all the information about a dependence structure, since the set of

copulas is one-to-one corresponding to the set of joint distributions when marginal

distributions are given and continuous. In the practice of actuarial science and finance,

it is more convenient and clear to use quantities instead of functions to measure

dependence, due to computational difficulties. Spearman’s rho and Kendall’s tau are

two commonly used measures of dependence between two random variables.

Let (X1, Y1), (X2, Y2) be independent random vectors with distribution function H

and continuous marginals F (x) = H(x,∞) and G(y) = H(∞, y). Then the Kendall’s

tau and the Spearman’s rho of (X1, Y1) are defined as

τ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]

and

ρs = 12E[(F (X1)− 1/2)(G(Y1)− 1/2)],
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respectively.

It is well-known that τ and ρs depends only on the copula C of X1 and Y1; see

Nelsen [69] for instance. Moreover, τ and ρs has the copula representation:

τ = 4

∫∫
[0,1]2

C(x, y)dC(x, y)− 1,

and

ρs = 12

∫∫
[0,1]2

C(x, y)dxdy − 3.

As measures of dependence, τ and ρs enjoy the following property.

Theorem 1.2.4. Let C, τ and ρs be the copula, the Kendall’s tau and the Spearman’s

rho of (X, Y ), respectively. Then

(a) C = M2 ⇔ τ = 1 ⇔ ρs = 1.

(b) C = W2 ⇔ τ = −1 ⇔ ρs = −1.

(c) C(u, v) = uv ⇒ τ = ρs = 0.

For a proof, see Embrechts, McNeil, and Straumann [34]. Note that although the

independence of X, Y implies τ = ρs = 0, the converse is not true.

Statistical inferences on the above dependence measures can be found in Nelsen

[69]. The Spearman’s rho is also extended to the multivariate case by Schmid and

Schmidt [91] and Nelsen and Úbeda-Flores [70].

In this thesis, we will investigate the statistical estimation problems related to

copulas and Spearman’s rho in Chapter III and solve Fréchet Class problems using

the method of copulas in Chapter IV. As an application, we also find an lower bound

for the multivariate version of Spearman’s rho in Chapter IV.

1.3 Fréchet Class Problems

1.3.1 Fréchet classes

As mentioned in Section 1.2, the dependence structure plays an important role in

the recent research of actuarial science, mathematical finance and risk management.
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Among the topics related to the dependence, one notable setting is called the problem

of Fréchet class. A Fréchet class is a class of random vectors with given marginal

distributions, usually denoted by Fn(F1, F2, · · · , Fn). Let X = (X1, · · · , Xn) is a

random vector in Rn, and the Fréchet class is defined as

Fn(F1, F2, · · · , Fn) = {X : Xi ∼ Fi, i = 1, · · · , n},

where n is the number of individual risks and F1, · · · , Fn are the n marginal distribu-

tions. As the simplest case, Fn(F, · · · , F ) is the set of random vectors with identical

given marginal distribution F . It is obvious that a random vector in a Fréchet class

is one-to-one corresponding to a copula. No surprise that copula methods are widely

used in the study of Fréchet classes.

The name of the Fréchet class comes from the result on the convex upper bound

in any Fréchet class, which is usually attributed to both Hoeffding [46] and Fréchet

[40] as mentioned in Section 1.2. In their seminal papers, it was provided that

FX(x1, · · · , xn) ≤ min{F1(x1), · · · , Fn(xn)}

for any random vector X ∈ Fn(F1, F2, · · · , Fn) with distribution function FX. This

bound is exactly due to the Fréchet upper bound Mn as mentioned in Section 1.2.

The result is closely related to the concepts of comonotonicity and stochastic ordering.

The readers are referred to Deelstra, Dhaene and Vanmaele [24] for an overview of the

comonotonicity and its applications in finance, and Shaked [92] for an introduction

and summary of the stochastic ordering.

The Fréchet class problems are important in the practice of modern risk man-

agement, simply because statistically estimating the joint distribution of a random

vector is usually much more difficult than estimating the marginal distributions from

the accessible data in the financial market today. Therefore, using the bounds instead

helps one to manage risks and uncertainty. Unfortunately, although the upper bound

in the convex-ordering sense was given more than half a century ago, the attempts
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to find the lower bounds of FX have never been that successful, as Wn is no longer a

copula for n ≥ 3.

As a more general class of problems, it has been asked for a long time to find the

bounds on the distribution of ψ(X),

mψ(s) = inf{P(ψ(X) < s) : X ∈ Fn(F1, F2, · · · , Fn)}, (1.5)

for for a function ψ. Makarov [63], in response to a question formulated earlier by

A.N. Kolmogorov, provided the first result of n = 2 and ψ = +, the sum operator.

An elegant and important duality result was later given by Rüschendorf [85]:

mψ(s) =1− inf

{
n∑
i=1

∫
fidFi : fi are bounded measurable functions on R s.t.

n∑
i=1

fi(xi) ≥ 1[s,+∞)(ψ(x1, · · · , xn)), for all xi ∈ R, i = 1, · · · , n

}
.

(1.6)

However, this dual optimization is still hard to solve in general.

In the next sections, we will summarize the recent attempts made to solve the

problems of bounds in Fréchet classes.

1.3.2 Bounds on the distribution of the total risk

Among different choices of ψ in (1.5), ψ(X) = +(X) = X1 + · · · +Xn is extensively

studied due to its nice mathematical properties and important applications in prac-

tice, as ψ(X) is the total risk or the joint portfolio of individual risks or assets in this

case.

Let X = (X1, · · · , Xn) ∈ Fn(F1, F2, · · · , Fn) be a risk vector with known marginal

distributions F1, · · · , Fn. Denote by S = X1 + · · ·+Xn the total risk. Researchers are

looking for the best-possible bounds for the distribution of the total risk S, namely

m+(s) = inf{P(S < s) : X ∈ Fn(F1, F2, · · · , Fn)}, (1.7)
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and

M+(s) = sup{P(S < s) : X ∈ Fn(F1, F2, · · · , Fn)}. (1.8)

The bounds m+(s) and M+(s) directly lead to the sharp bounds on quantile-based

risk measures of S. In practice, the managers of investment banks are more interested

in the Value-at-Risk of a joint portfolio. The Value-at-Risk (VaR) at level α is defined

as

VaRα(S) = inf{s ∈ R : P(S ≤ s) ≥ α}.

The bounds on the above VaR are called the worst (best) Value-at-Risk scenarios and

are given by the inverse functions of the bounds m+(s) and M+(s).

Rüschendorf [85] first found m+(s) when all marginal distributions have the same

uniform or binomial distribution, where the techniques of the duality (1.6) were

employed. A complete analysis of this kind of problems was given in Rachev and

Rüschendorf [83]. After the 1982 paper [85], no significant results were given for

about fifteen years.

In the 1990s, the method of copulas has became more and more popular. As the

ultimate modern tool for modeling dependence, copulas kicked in and helped with

solving the Fréchet class problems (1.7) and (1.8). The papers of P. Embrechts at

ETHZ and his colleagues were considered the most relevant during the last decade.

Denuit, Genest and Marceau [26] and Embrechts, Höing and Juri [32] used copulas

to obtain the so-called standard bounds and discussed some applications. The stan-

dard bounds are no longer sharp for n ≥ 3. Embrechts and Puccetti [35] provided

a better lower bound which is still not sharp, in the case when all marginal distri-

butions are the same and continuous. Some results when partial information on the

dependence structure were also given in that paper. Embrechts and Höing [31] pro-

vided a geometric interpretation to highlight the shape of the dependence structures

with the worst VaR scenarios. Embrechts and Puccetti [36] extended this problem

to multivariate marginal distributions and provided results similar to the univariate
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case. Kaas, Laeven and Nelsen [54] studied the worst VaR scenarios for the case when

partial information on some measure of dependence is known.

Finally, we refer to Embrechts and Puccetti [37] for an overview on the importance

and applications of problems (4.2) and (4.3) in quantitative risk management.

1.3.3 Bounds on other quantities

Related to the Fréchet class, another classic problem in simulation and variance re-

duction is to minimize the variance of the sum S of random variables X1, · · · , Xn

with given marginal distributions, i.e.

inf{Var(S) : X ∈ Fn(F1, F2, · · · , Fn)}. (1.9)

Fishman [38] and Hammersley and Handscomb [43] present good introduction and

references on this problem. It is well-known that for n = 2 the solution is given by

the antithetic variates X1 = F−
1 (U) and X2 = F−

2 (1−U) where F− is the inverse cdf

of P and U is uniform on [0,1]. For n ≥ 3 the problem is generally difficult to solve.

A more general version of the problem (1.9) is

inf{Ef(S) : X ∈ Fn(F1, F2, · · · , Fn)}. (1.10)

There are many special cases of (1.10), such as the variance minimization problem

(1.9), the minimum of expected product

inf{E(X1 · · ·Xn) : X ∈ Fn(F1, F2, · · · , Fn)}, (1.11)

and bounds on the stop-loss premium

inf{E[(X1 + · · ·+Xn − t)+] : X ∈ Fn(F1, F2, · · · , Fn)}, (1.12)

where (·)+ = max(·, 0). Many of the special cases are related to various topics in

statistics, risk theory, copulas and stochastic orders. (1.11) is directly linked to the

lower bound of the multivariate Spearman’s rho introduced by Schmid and Schmidt

[91].
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Studies for n ≥ 3 have been done mostly in the homogenous (when F1 = · · · =

Fn = F ). Gaffke and Rüschendorf [41] proposed to find a dependence structure to

concentrate S around its expectation as much as possible, since it is obvious S = c is

an optimal solution to (1.9) if such constant c exists. Then it follows a question: for

which F , S is possibly a constant? Gaffke and Rüschendorf [41] studied the property

of possible S = c in the case of uniform distributions and binomial distributions. The

case of distributions with symmetric and unimodal density was studied for n = 3 by

Knott and Smith [60, 61] and for the general case n ≥ 2 by Rüschendorf and Uckel-

mann [87] using a different method. The property was also extended to multivariate

distributions in Rüschendorf and Uckelmann [87].

In Chapter IV, we will present a new concept called complete mixability distribu-

tions. The new technique developed here can be used to solve (1.7) (1.8) and (1.10)

in the case of F is a completely mixable distribution, or F is a distribution with

monotone density on its support. This result completes the convex ordering bounds

in the Fréchet class Fn(F, F, · · · , F ) for F with a monotone density.
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CHAPTER II

EMPIRICAL LIKELIHOOD TESTS FOR

HIGH-DIMENSIONAL DATA ANALYSIS

High-dimensional (HD) data analysis is arguably one of the most popular topics in

the research of statistics nowadays. The developments on this topic have been very

significant, with a wide range of applications. The phenomena of high-dimensionality

appears extensively in genomics, economics, finance, linguistics and many other fields

of the modern science. We refer to the book Cai and Shen [13] for a review of the

recent developments and applications of the HD data analysis. In this chapter, we

will investigate four testing problems within the HD framework, using the methods of

the empirical likelihood. The contents in this chapter is mainly based on the following

preprints.

1. Wang, R., Peng, L. and Qi, Y. (2012). Jackknife empirical likelihood test for

equality of two high dimensional means. Preprint.

2. Peng, L., Qi, Y. and Wang, R. (2012). Empirical likelihood test for high-

dimensional linear models. Preprint.

3. Zhang, R., Peng, L. and Wang, R. (2012). Tests for covariance matrix with

fixed or divergent dimension. Preprint.

2.1 Introduction, Notations and Regularity Conditions

In this chapter, we investigate the testing problems associated with an array of i.i.d.

p-dimensional vectors Xi = X
(n)
i = (X

(n)
i,1 , · · · , X

(n)
i,p ) for i = 1, · · · , n. When p is

fixed and small, conventional tests such as the Hotelling T 2 test perform well both
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theoretically and computationally. However, if the dimension p approaches infinity

as the sample size n goes to infinity, the classic methods do not work in general; see

[5, 15, 16] for instance, and this phenomena will be discussed later in the following

sections.

The classic testing problems are of our interest, where all quantities may depend

on n and p.

(i) Suppose (X1, · · · , Xn1) and (Y1, · · · , Yn2) are two independent random samples

with sample sizes n1, n2 and unknown means µ1, µ2 respectively. Consider the

testing problem

H0 : µ1 = µ2 against H1 : µ1 6= µ2. (2.1)

(ii) Suppose X1, · · · , Xn are independent and Yi = βTXi + εi, for i = 1, · · · , n,

where β = (β1, · · · , βp)T is the vector of unknown parameters and ε1, · · · εn are

iid random errors. Consider the testing problem

H0 : β = β0 against H1 : β 6= β0. (2.2)

(iii) Suppose X1, · · · , Xn are independent with an unknown covariance matrix Σ =

(σij)p×p. Consider the testing problem

H0 : Σ = Σ0 against H1 : Σ 6= Σ0. (2.3)

(iv) Similar to (iii), consider the testing problem

H0 : σij = 0 for all |i− j| ≥ τ against H1: H0 is false. (2.4)

In this chapter, to apply new empirical likelihood methods to those problems, the

following regularity condition will be frequently used.

(P). An estimator T with sample size n satisfies condition (P) if ET 2 > 0 and for

some δ > 0,

E|T |2+δ

(ET 2)1+δ/2
= o(n

δ+min(δ,2)
4 ).
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For example, if E(T 4)/(E(T 2))2 = o(n), then T satisfies (P) with δ = 2. Note that

this condition is generally satisfied by Gaussian random vectors.

Condition (P) is concise and necessary to guarantee the conditions (L1)–(L3) used

in the empirical likelihood. However, (P) is sometimes inconvenient to check when

the estimator T is complicated. Hence, we propose the following two models.

In the following models, let X = (X1, · · · , Xn) be a random sample of size n,

with mean µ and covariance matrix Σ, and λ1 ≤ · · · ≤ λd be the p eigenvalues of the

matrix Σ.

(A). A random sample X of size n satisfies condition (A) if

(A1) 0 < lim inf
n→∞

λ1 ≤ lim sup
n→∞

λp <∞.

(A2) For some δ > 0, 1
p

∑p
i=1 E|X1,i − µi|2+δ = O(1), and

(A3) p = o(m
δ+min(δ,2)

2(2+δ) ).

Condition (A3) is a somewhat restrictive condition for the dimension p. Note that

conditions (A1) and (A2) are related only to the covariance matrices and some higher

moments on the components of the random vectors. The higher moments we have,

the less restriction is imposed on p. Condition (A3) can be removed for models with

some special dependence structures. For comparison purpose, we will also consider

the following model (B) used in Bai and Saranadasa [5], Chen, Peng and Qin [15] and

Chen and Qin [16].

(B). (Factor model.) A random sample X of size n satisfies condition (B) if

Xi = ΓBi + µ1

for i = 1, · · · , n1, where Γ is a p×k matrix with ΓΓT = Σ, {Bi = (Bi,1, · · · , Bi,k)
T}n1

i=1

is an independent random sample satisfying that EBi = 0, Var(Bi) = Ik×k,
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EB4
i,j = 3 + ξ <∞, and

E
k∏
l=1

Bνl
i,il

=
k∏
l=1

EBνl
i,il

when ν1 + · · ·+ νk = 4 for distinct nonnegative integers il’s.

In the problem of testing covariance matrices (Section 2.4), a stronger condition on

the moment is imposed due to the effect of high-order statistics. Therefore, we list

the alternative model (B’) below for covariance testing problems.

(B’). A random sample X of size n satisfies condition (B’) if (B) holds, and each of

Bi,j in (B) has uniformly bounded 8th moment, and

E
k∏
l=1

Bνl
i,il

=
k∏
l=1

EBνl
i,il

when ν1 + · · ·+ νk = 8 for distinct nonnegative integers ıl’s.

The idea of constructing tests in this chapter is as follows. In order to test H0: a

vector parameter v = 0 (e.g. in problem (i) v = µ1 − µ2), we first find an estimator

T such that E(T ) = 0 is equivalent to H0. Then we use E(T ) = 0 as the estimating

equation to apply the empirical likelihood method. Such a test may not be powerful;

we add one more linear functional to enhance the power of the test. The methods are

new and they usually require a weaker assumption on the model compared to existing

work in the literature. Most of the proofs in this chapter are justifying conditions

(R1)–(R3). Lastly, it is worth mentioning that the power of the tests proposed in this

chapter perform better in the case of dense model (i.e. in the alternative hypothesis,

many components of v 6= 0), rather than the sparse model (i.e. in the alternative

hypothesis, many components of v = 0).

The rest of this chapter is organized as follows. In Section 2.2, we present a

jackknife empirical likelihood test for problem (i). An empirical likelihood test for

problem (ii) is introduced in Section 2.3. Tests for problem (iii) and (iv) are discussed

in Section 2.4. In each section, there are separate subsections of an introduction, main

results, simulation studies and proofs.
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2.2 Test for Equality of Two High-dimensional Means

It has been a long history to test the equality of two multivariate means. One pop-

ular test is the so-called Hotelling T 2 test. However, as the dimension diverges, the

Hotelling T 2 test performs poorly due to the possible inconsistency of the sample

covariance estimation. To overcome this issue and allow the dimension to diverge as

fast as possible, Bai and Saranadasa [5] and Chen and Qin [16] proposed tests without

the sample covariance involved, and derived the asymptotic limits which depend on

whether the dimension is fixed or diverges under a specific multivariate model. In

this section, we propose a jackknife empirical likelihood test which has a chi-square

limit independent of the dimension, and the conditions are much weaker than those

in the existing methods. A simulation study shows that the proposed new test has a

very robust size with respect to the dimension, and is powerful too.

2.2.1 Introduction

SupposeX = {Xi = (Xi,1, · · · , Xi,p)
T : i = 1, . . . , n1} and Y = {Yj = (Yj,1, · · · , Yj,p)T :

j = 1, . . . , n2} are two independent random samples with means µ1 and µ2, respec-

tively. It has been a long history to test H0 : µ1 = µ2 against Ha : µ1 6= µ2 for a fixed

dimension p. When both X1 and Y1 have a multivariate normal distribution with

equal covariance, the well-known test is the so-called Hotelling T 2 test defined as

T 2 = η(X̄− Ȳ)TA−1
n (X̄− Ȳ), (2.5)

where η = (n1+n2−2)n1n2

n1+n2
, X̄ = 1

n1

∑n1

i=1Xi, Ȳ = 1
n2

∑n2

i=1 Yi and An =
∑n1

i=1(Xi −

X̄)(Xi − X̄)T +
∑n2

i=1(Yi − Ȳ)(Yi − Ȳ)T . However, when p = p(n1, n2) → ∞, the

Hotelling T 2 test performs poorly due to the possible inconsistency of the sample

covariance estimation. When p/(n1 + n2) → c ∈ (0, 1), Bai and Saranadasa [5]

derived the asymptotic power of T 2. To overcome the restriction c < 1, Bai and
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Saranadasa [5] proposed to employ

Mn = (X̄− Ȳ)T (X̄− Ȳ)− η−1tr(An)

instead of T 2 under a special multivariate model without assuming multivariate nor-

mality while keeping the condition of equal covariance, and derived the asymptotic

limit when p/(n1 + n2) → c > 0. Recently Chen and Qin [16] proposed to use the

following test statistic

CQ =

∑n1

i6=j X
T
i Xj

n1(n1 − 1)
+

∑n2

i6=j Y
T
i Yj

n2(n2 − 1)
− 2

∑n1

i=1

∑n2

j=1X
T
i Yj

n1n2

(2.6)

in order to allow p to be a possible larger order than that in Bai and Saranadasa [5].

Again, the asymptotic limit of the proposed test statistic CQ depends on whether the

dimension is fixed or diverges, which results in either a normal limit or a chi-square

limit, and special models for {Xi} and {Yi} are employed. Another modification

of Hotelling T 2 test is proposed by Srivastava and Du [97] and Srivastava [96] with

the covariance matrix replaced by a diagonal matrix. Rates of convergence for high

dimensional means are studied by Kuelbs and Vidyashankar [59]). For nonasymptotic

studies of high dimensional means, we refer to Arlot, Blanchard and Roquain [2, 3].

Here, we are interested in seeking a test which does not need to distinguish whether

the dimension is fixed or diverges.

By noting that µ1 = µ2 is equivalent to (µ1−µ2)
T (µ1−µ2) = 0, one may think of

applying an empirical likelihood test to the estimating equation E{(Xi1−Yj1)T (Xi2−

Yj2)} = 0 for i1 6= i2 and j1 6= j2. If one directly applies the empirical likelihood

method based on estimating equations proposed in Qin and Lawless [82] by using the

samples X1, · · · , Xn1 and Y1, · · · , Yn2 , then one may define the empirical likelihood

function

sup

{
n1∏
i=1

(n1pi)

n2∏
j=1

(n2qj) : p1 ≥ 0, · · · , pn1 ≥ 0, q1 ≥ 0, · · · , qn2 ≥ 0,

n1∑
i=1

pi = 1,

n2∑
j=1

qj = 1,

n1∑
i1=1

∑
i2 6=i1

n2∑
j1=1

∑
j2 6=j1

(pi1Xi1 − qj1Yj1)
T (pi2Xi2 − qj2Yj2) = 0

}
,
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which makes the minimization unsolvable. The reason is that the estimating equa-

tion defines a nonlinear functional, and in general one has to linearize the nonlinear

functional before applying the empirical likelihood method. For more details on

empirical likelihood methods, we refer to Owen [73] and the review paper of Chen

and Van Keilegom [17]. Recently, Jing, Yuan and Zhou [47] proposed a so-called

jackknife empirical likelihood method to construct confidence regions for nonlinear

functionals with a particular focus on U-statistics. Using this idea, one needs to

construct a jackknife sample based on the following estimator n−1
1 (n1− 1)−1n−1

2 (n2−

1)−1
∑n1

i1 6=i2
∑n2

j1 6=j2(Xi1−Yj1)T (Xi2−Yj2), which equals the statistic CQ given in (2.6).

However, in order to have the jackknife empirical likelihood method work, one has to

show that
√
n1n2n

−1
1 (n1−1)−1n−1

2 (n2−1)−1
∑n1

i1 6=i2
∑n2

j1 6=j2(Xi1−Yj1)T (Xi2−Yj2) has

a normal limit when µ1 = µ2. Consider n1 = n2 = n, d = 1, µ1 = µ2. Then it is easy

to see that

n−1(n− 1)−2

n∑
i1 6=i2

n∑
j1 6=j2

(Xi1 − Yj1)
T (Xi2 − Yj2)

=
1

n− 1
{

n∑
i=1

(Xi − Yi)}2 − 1

n− 1

n∑
i=1

(Xi − Yi)
2 +

2

n(n− 1)

n∑
i=1

Xi

n∑
j=1

Yj

− 2

(n− 1)

n∑
i=1

XiYi

p→ {N(0,E(X1 − Y1)
2)}2 − E(X1 − Y1)

2

which does not have a normal limit as n → ∞. Hence a direct application of the

jackknife empirical likelihood method to the statistic CQ will not lead to a chi-square

limit.

In this section, we propose a novel way to formulate a jackknife empirical likelihood

test for testing H0 : µ1 = µ2 against Ha : µ1 6= µ2 by dividing the samples into two

parts. The proposed new test has no need to distinguish whether the dimension is

fixed or goes to infinity. It turns out that the asymptotic limit of the new test under

H0 is a chi-square limit independent of the dimension, the conditions on p and random
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variables {Xi} and {Yj} are weaker too. A simulation study shows that the size of

the new test is quite stable with respect to the dimension and the proposed test is

powerful as well.

We organize the whole section as follows. In Section 2.2.2, the new methodology

and main results are given. Section 2.2.3 presents a simulation study and a real data

analysis. All proofs are put in Section 2.2.4.

2.2.2 Methodology

As mentioned in Section 2.2.1, throughout assume Xi = (Xi,1, · · · , Xi,p)
T for i =

1, · · · , n1 and Yj = (Yj,1, · · · , Yj,p)T for j = 1, · · · , n2 are two independent random

samples with means µ1 and µ2, respectively. Assume min{n1, n2} goes to infinity.

The question is to test H0 : µ1 = µ2 against Ha : µ1 6= µ2. Since µ1 = µ2 is equivalent

to (µ1 − µ2)
T (µ1 − µ2) = 0 and E(Xi1 − Yj1)

T (Xi2 − Yj2) = (µ1 − µ2)
T (µ1 − µ2) for

i1 6= i2 and j1 6= j2, we propose to apply the jackknife empirical likelihood method to

the above estimating equation. As explained in the introduction, a direct application

fails to have a chi-square limit. Here we propose to split the samples into two groups

as follows.

Put m1 = [n1/2], m2 = [n2/2], m = m1 +m2, X̄i = Xi+m1 for i = 1, · · · ,m1, and

Ȳj = Yj+m2 for j = 1, · · · ,m2. First we propose to estimate (µ1 − µ2)
T (µ1 − µ2) by

1

m1m2

m1∑
i=1

m2∑
j=1

(Xi − Yj)
T (X̄i − Ȳj), (2.7)

which is less efficient than the statistic CQ. However, it allows us to add more estimat-

ing equations and to employ the empirical likelihood method without estimating the

asymptotic covariance. By noting that E{(Xi−Yj)T (X̄i−Ȳj)} = (µ1−µ2)
T (µ1−µ2) =

||µ1 − µ2||2 instead of O(||µ1 − µ2||), one may expect that a test based on (2.7) will

not be powerful for a small value of ||µ1−µ2||, confirmed by a brief simulation study.

In order to improve the power, we propose to apply the jackknife empirical likelihood
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method in Jing, Yuan and Zhou [47] to both (2.7) and a linear functional such as

1

m1m2

m1∑
i=1

m2∑
j=1

{(Xi − Yj)
T1p + (X̄i − Ȳj)

T1p} (2.8)

rather than only (2.7), where 1p = (1, · · · , 1)T . Note that equation (2.8) can be

replaced by another linear functional or several functionals with at least one linear

functional to further improve the power. With prior information on the model or

more specific alternative hypothesis, some linear functionals can be chosen to replace

(2.8) so as to improve the power of the test. With no additional information, any

linear functional is a possible choice theoretically. Simulation study suggests that

applying the jackknife empirical likelihood to (2.7) and (2.8) results in a test with

good power and quite robust size with respect to the dimension.

As in Jing, Yuan and Zhou [47], based on (2.7) and (2.8), we formulate the jack-

knife sample as Zk = (Zk,1, Zk,2)
T for k = 1, · · · ,m, where

Zk,1 = m1+m2

m1m2

∑m1

i=1

∑m2

j=1(Xi − Yj)
T (X̄i − Ȳj)

−m1+m2−1
(m1−1)m2

∑m1

i6=k,i=1

∑m2

j=1(Xi − Yj)
T (X̄i − Ȳj)

Zk,2 = m1+m2

m1m2

∑m1

i=1

∑m2

j=1{(Xi − Yj)
T1p + (X̄i − Ȳj)

T1p}

−m1+m2−1
(m1−1)m2

∑m1

i6=k,i=1

∑m2

j=1{(Xi − Yj)
T1p + (X̄i − Ȳj)

T1p}

for k = 1, · · · ,m1, and

Zk,1 = m1+m2

m1m2

∑m1

i=1

∑m2

j=1(Xi − Yj)
T (X̄i − Ȳj)

−m1+m2−1
m1(m2−1)

∑m1

i=1

∑m2

j 6=k−m1,j=1(Xi − Yj)
T (X̄i − Ȳj)

Zk,2 = m1+m2

m1m2

∑m1

i=1

∑m2

j=1{(Xi − Yj)
T1p + (X̄i − Ȳj)

T1p}

−m1+m2−1
m1(m2−1)

∑m1

i=1

∑m2

j 6=k−m1,j=1{(Xi − Yj)
T1p + (X̄i − Ȳj)

T1p}

for k = m1 + 1, · · · ,m. Based on this jackknife sample, the jackknife empirical

likelihood function for testing H0 : µ1 = µ2 is defined as

Lm = sup{
m∏
i=1

(mpi) : p1 ≥ 0, · · · , pm ≥ 0,
m∑
i=1

pi = 1,
m∑
i=1

piZi = (0, 0)T}.
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By the Lagrange multiplier technique, we have pk = m−1{1 + βTZk}−1 for k =

1, · · · ,m and lm = −2 logLm = 2
∑m

i=1 log{1 + βTZk}, where β satisfies

1

m

m∑
i=1

Zk
1 + βTZk

= (0, 0)T . (2.9)

Write Σ = (σij)1≤i≤p,1≤j≤p = E{(X1 − µ1)(X1 − µ1)
T}, the covariance matrix of

X1, and use λ1 ≤ · · · ≤ λp to denote the p eigenvalues of the matrix Σ. Similarly,

write Σ̄ = (σ̄ij)1≤i≤p,1≤j≤p = E{(Y1 − µ2)(Y1 − µ2)
T} and use λ̄1 ≤ · · · ≤ λ̄p to denote

the p eigenvalues of the matrix Σ̄. Also write

ρ1 =

p∑
i,j=1

σ2
i,j, ρ2 =

p∑
i,j=1

σ̄2
i,j, τ1 = 2

p∑
i,j=1

σi,j, τ2 = 2

p∑
i,j=1

σ̄i,j. (2.10)

Note that ρ1 = E[(X1−µ1)
T (X1−µ1)]

2, ρ2 = E[(Y1−µ2)
T (Y1−µ2)]

2, τ1 = 2E[1Tp (X1−

µ1)]
2 and τ2 = 2E[1Tp (Y1 − µ2)]

2, and these quantities may depend on n1, n2 since p

may depend on n1, n2.

Theorem 2.2.1. Assume min{n1, n2} → ∞, τ1 and τ2 in (2.10) are positive, and

for some δ > 0,

E|(X1 − µ1)
T (X̄1 − µ1)|2+δ

ρ
(2+δ)/2
1

= o(m
δ+min(δ,2)

4
1 ), (2.11)

E|(Y1 − µ2)
T (Ȳ1 − µ2)|2+δ

ρ
(2+δ)/2
2

= o(m
δ+min(δ,2)

4
2 ), (2.12)

E|1Tp (X1 + X̄1 − 2µ1)|2+δ

τ
(2+δ)/2
1

= o(m
δ+min(δ,2)

4
1 ), (2.13)

and
E|1Tp (Y1 + Ȳ1 − 2µ2)|2+δ

τ
(2+δ)/2
2

= o(m
δ+min(δ,2)

4
2 ). (2.14)

Then, under H0 : µ1 = µ2, lm converges in distribution to a chi-square distribution

with two degrees of freedom as min{n1, n2} → ∞.

Based on the above theorem, one can test H0 : µ1 = µ2 against Ha : µ1 6= µ2 by

rejecting H0 when lm ≥ χ2
2,γ, where χ2

2,γ denotes the (1− γ)−quantile of a chi-square

distribution with two degrees of freedom and γ is the significant level.

28



www.manaraa.com

Remark 2.2.1. Conditions (2.11)–(2.14) can be rephrased as (X1 − µ1)
T (X̄1 − µ1),

(Y1 − µ2)
T (Ȳ1 − µ2) 1Tp (X1 + X̄1 − 2µ1) and 1Tp (Y1 + Ȳ1 − 2µ2) satisfy condition (P).

Remark 2.2.2. In (2.11)–(2.14), the restrictions are put on E|W |2+δ/(EW 2)(2+δ)/2 for

some random variablesW , which are necessary for the CLT to hold for random arrays.

Later we will see those conditions are easily satisfied by imposing some conditions on

the higher-order moments or special dependence structure.

Remark 2.2.3. The proposed test has the following merits:

1. The limiting distribution is always chi-square without estimating the asymptotic

covariance.

2. It does not require any specific structure such as the one used in Bai and

Saranadasa [5] and Chen and Qin [16], which will be discussed later.

3. With higher-order moment condition or special dependence structure of {Xi}

and {Yi}, p can be very large.

4. There is no restriction imposed on the relation between n1 and n2 except that

min{n1, n2} → ∞. That is, no need to assume a limit or bound on the ratio

n1/n2. Moreover, no assumptions are needed on ρ1/ρ2 or τ1/τ2. Hence the

covariance matrices Σ1 and Σ2 can be arbitrary as long as τ1,τ2 > 0, which

are simply equivalent to
∑p

i=1X1,i and
∑p

i=1 Y1,i are non-degenerate random

variables.

Next we verify Theorem 2.2.1 with model (A) and (B).

Corollary 2.2.2. Assume min{n1, n2} → ∞, X and Y satisfy (A). Then, under

H0 : µ1 = µ2, conditions (2.11) – (2.14) are satisfied, i.e., Theorem 2.2.1 holds.

Theorem 2.2.3. Assume τ1 and τ2 in (2.10) are positive and X and Y satisfy (B).

Then under H0 : µ1 = µ2, lm converges in distribution to a chi-square distribution

with two degrees of freedom as min{n1, n2} → ∞.

29



www.manaraa.com

Remark 2.2.4. It can be seen from the proof of Theorem 2.2.3 that assumptions

EB4
i,j = 3 + ξ1 < ∞ in model (B) can be replaced by the much weaker conditions

max1≤j≤k EB4
1,j = o(m). Unlike Bai and Saranadasa [5] and Chen and Qin [16], there

is no restriction on p and k for our proposed method. The only constraint imposed

on matrices Γ1 and Γ2 is that both
∑p

i=1X1,i and
∑p

i=1 Y1,i are non-degenerate, which

is very weak.

2.2.3 Simulation study

We investigate the finite sample behavior of the proposed jackknife empirical likeli-

hood test (JEL) and compare it with the test statistic in (2.6) proposed by Chen and

Qin [16] in terms of both size and power.

Let W1, · · · ,Wp be iid random variables with distribution function N(0, 1), and let

W̄1, · · · , W̄p, independent of W ′
is be iid random variables with distribution function

t(8). Put X1,1 = W1, X1,2 = W1 +W2, · · · , X1,p = Wd−1 +Wp, Y1,1 = W̄1 +µ2,1, Y1,2 =

W̄1 + W̄2 +µ2,2, · · · , Y1,p = W̄d−1 + W̄p +µ2,p, where µ2,i = c1 if i ≤ [c2p], and µ2,i = 0

if i > [c2p]. That is, 100c2% of the components of Y1 have a shifted mean compared

to that of X1.

Since we test H0 : EX1 = EY1 against Ha : EX1 6= EY1, the case of c1 = 0

denotes the size of tests. By drawing 1, 000 random samples of sizes n1 = 30, 100, 150

from X = (X1,1, · · · , X1,p)
T and independently drawing 1, 000 random samples of

sizes n2 = 30, 100, 200 from Y = (Y1,1, · · · , Y1,p)
T with d = 10, 20, · · · , 100, 300, 500,

c1 = 0, 0.1 and c2 = 0.25, 0.75, we calculate the powers of the two tests mentioned

above.

In Tables 2.1–2.3, we report the empirical sizes and powers for the proposed jack-

knife empirical likelihood test and the test in Chen and Qin [16] at level 5%. Results

for level 10% are similar. From these three tables, we observe that (i) the size of both

tests, i.e., results for c1 = 0 is quite stable with respect to the dimension p; (ii) the
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Table 2.1: Sizes and powers of the proposed jackknife empirical likelihood test (JEL)
and the test in Chen and Qin [16] (CQ) are reported for the case of (n1, n2) = (30, 30)
at level 5%.

p JEL CQ JEL CQ JEL CQ
c1 = 0 c1 = 0 c1 = 0.1 c1 = 0.1 c1 = 0.1 c1 = 0.1
c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.75 c2 = 0.75

10 0.070 0.049 0.071 0.049 0.072 0.062
20 0.056 0.037 0.057 0.049 0.096 0.060
30 0.064 0.047 0.066 0.049 0.113 0.066
40 0.070 0.052 0.069 0.058 0.116 0.072
50 0.067 0.049 0.083 0.054 0.138 0.067
60 0.063 0.039 0.069 0.043 0.174 0.055
70 0.053 0.053 0.076 0.065 0.190 0.081
80 0.056 0.059 0.063 0.067 0.191 0.082
90 0.056 0.044 0.080 0.054 0.204 0.071
100 0.066 0.060 0.082 0.064 0.229 0.091
300 0.056 0.045 0.114 0.054 0.537 0.092
500 0.049 0.051 0.160 0.063 0.731 0.110

proposed jackknife empirical likelihood test is more powerful than the test in Chen

and Qin [16] for the case of c2 = 0.75 and the case when the data is sparse, but p

is large (i.e., the case of c1 = 0.1, c2 = 0.25). Since equation (2.8) has nothing to do

with sparsity, it is expected that the proposed jackknife empirical likelihood method

is not powerful when the data is sparse. Hence, it would be of interest to connect

sparsity with some estimating equations so as to improve the power of the proposed

jackknife empirical likelihood test.

In conclusion, the proposed jackknife empirical likelihood test has a very stable

size with respect to the dimension and is powerful under the dense model. Moreover,

the new test is easy to compute, flexible to take other information into account, and

works for both fixed dimension and divergent dimension.
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Table 2.2: Sizes and powers of the proposed jackknife empirical likelihood test (JEL)
and the test in Chen and Qin [16] (CQ) are reported for the case of (n1, n2) =
(100, 100) at level 5%.

p JEL CQ JEL CQ JEL CQ
c1 = 0 c1 = 0 c1 = 0.1 c1 = 0.1 c1 = 0.1 c1 = 0.1
c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.75 c2 = 0.75

10 0.074 0.054 0.072 0.063 0.099 0.090
20 0.043 0.047 0.053 0.055 0.145 0.098
30 0.047 0.047 0.056 0.063 0.191 0.115
40 0.051 0.050 0.063 0.062 0.264 0.125
50 0.055 0.040 0.077 0.061 0.326 0.131
60 0.055 0.044 0.077 0.067 0.374 0.151
70 0.043 0.051 0.063 0.086 0.395 0.150
80 0.042 0.059 0.082 0.079 0.474 0.171
90 0.043 0.040 0.098 0.065 0.527 0.163
100 0.049 0.054 0.091 0.088 0.575 0.194
300 0.048 0.054 0.217 0.102 0.974 0.389
500 0.049 0.041 0.353 0.115 0.999 0.544

Table 2.3: Sizes and powers of the proposed jackknife empirical likelihood test (JEL)
and the test in Chen and Qin [16] (CQ) are reported for the case of (n1, n2) =
(150, 200) at level 5%.

p JEL CQ JEL CQ JEL CQ
c1 = 0 c1 = 0 c1 = 0.1 c1 = 0.1 c1 = 0.1 c1 = 0.1
c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.25 c2 = 0.75 c2 = 0.75

10 0.048 0.054 0.054 0.062 0.129 0.116
20 0.055 0.042 0.078 0.075 0.237 0.166
30 0.052 0.054 0.079 0.081 0.330 0.207
40 0.039 0.035 0.070 0.068 0.430 0.212
50 0.039 0.048 0.071 0.094 0.480 0.231
60 0.047 0.051 0.092 0.095 0.598 0.273
70 0.046 0.051 0.086 0.107 0.658 0.309
80 0.042 0.047 0.113 0.109 0.753 0.327
90 0.046 0.043 0.148 0.098 0.781 0.346
100 0.048 0.059 0.141 0.117 0.821 0.365
300 0.044 0.040 0.370 0.163 1 0.703
500 0.047 0.045 0.555 0.235 1 0.899
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2.2.4 Proofs

In the proofs we use || · || to denote the L2 norm of a vector or matrix. Since µ1−µ2 is

our target and under null hypothesis µ1−µ2 = 0, without loss of generality we assume

µ1 = µ2 = 0. Write uij = (Xi − Yj)T (X̄i − Ȳj) and vij = (Xi − Yj)T1p + (X̄i − Ȳj)T1p

for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. Then it is easily verified that for 1 ≤ i, k ≤ m1, 1 ≤

j, l ≤ m2,

E(uij) = E(vkl) = E(uijvkl) = 0,

Var(ukl) =

p∑
i,j=1

(σ2
i,j + σ̄2

i,j) = ρ1 + ρ2,

and

Var(vkl) = 2

p∑
i,j=1

(σi,j + σ̄i,j) = τ1 + τ2.

Lemma 2.2.4. Under conditions of Theorem 1, we have as min{n1, n2} → ∞

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

d→ N(0, 1), (2.15)

1
√
m2

m2∑
j=1

Y T
j Ȳj√
ρ2

d→ N(0, 1), (2.16)

1
√
m1

m1∑
i=1

1Tp (Xi + X̄i)√
τ1

d→ N(0, 1), (2.17)

and

1
√
m2

m2∑
j=1

1Tp (Yj + Ȳj)√
τ2

d→ N(0, 1). (2.18)

Proof. Since Var(XT
i X̄i) = ρ1 and XT

1 X̄1, · · · , XT
m1
X̄m1 are i.i.d. for fixed m1, equa-

tion (2.15) follows from (2.11) and the Lyapunov central limit theorem. The rest can

be shown in the same way.

From now on we denote

ρ =
m

m1

ρ1 +
m

m2

ρ2 anp τ =
m

m1

τ1 +
m

m2

τ2.
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Lemma 2.2.5. Under conditions of Theorem 1, we have as min{n1, n2} → ∞
√
m

m1m2
√
ρ

m1∑
i=1

XT
i

m2∑
j=1

Ȳj
p→ 0, (2.19)

1

m1

√
τ

m1∑
i=1

1TpXi
p→ 0, (2.20)

1

m2

√
τ

m2∑
j=1

1Tp Yj
p→ 0, (2.21)

1

m1

m1∑
i=1

(XT
i X̄i)

2

ρ1

p→ 1, (2.22)

1

m2

m2∑
j=1

(Y T
j Ȳj)

2

ρ2

p→ 1, (2.23)

1

m1

m1∑
i=1

[1Tp (Xi + X̄i)]
2

τ1

p→ 1, (2.24)

1

m2

m2∑
j=1

[1Tp (Yj + Ȳj)]
2

τ2

p→ 1, (2.25)

1

m1

m1∑
i=1

XT
i X̄i[1

T
p (Xi + X̄i)]√
ρ1τ1

p→ 0, (2.26)

and

1

m2

m2∑
i=1

Y T
j Ȳj[1

T
p (Yj + Ȳj)]√
ρ2τ2

p→ 0. (2.27)

Proof. Note that µ1 = µ2 = 0 are assumed in Section 4. Then (2.19) follows from the
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fact that

Var(

√
m

m1m2
√
ρ

m1∑
i=1

XT
i

m2∑
j=1

Yj) = E

 m

m2
1m

2
2ρ

(
m1∑
i=1

m2∑
j=1

XT
i Yj

)2


= E

[
m

m2
1m

2
2ρ

m1∑
i=1

m2∑
j=1

(XT
i Yj)

2

]

= E
[

m

m1m2ρ
(XT

1 Y1)
2

]
=

m

m1m2ρ

p∑
i,j=1

σijσ̄ij

≤ m

m1 +m2

ρ1 + ρ2

2ρ

≤ 1

2
(

1

m1

+
1

m2

)

= o(1).

In the same way, we can show (2.20) and (2.21).

To show (2.22), write ui = XT
i X̄i. We need to estimate E|

∑m1

i=1 u
2
i −m1ρ1|(2+δ)/2.

Note that ρ1 = Eu2
1. When 0 < δ ≤ 2, it follows from von Bahr and Esseen [98] that

E|
m1∑
i=1

u2
i −m1ρ1|(2+δ)/2 ≤ 2m1E|u2

1 − E(u2
1)|(2+δ)/2 = O(m1E|u1|2+δ). (2.28)

When δ > 2, it follows from Dharmadhikari and Jogdeo [28] that

E|
m1∑
i=1

u2
i −m1ρ1|(2+δ)/2 = O(m

(2+δ)/4
1 E|u2

1 − E(u2
1)|(2+δ)/2) = O(m

(2+δ)/4
1 E|u1|2+δ).

(2.29)

Therefore, by (2.28), (2.29) and (2.11) we have for any ε > 0

P(|
∑m1

i=1 u
2
i

m1ρ1

− 1| > ε)

≤ ε−(2+δ)/2 E|
∑m1

i=1 u
2
i −mρ1|(2+δ)/2

(m1ρ1)(2+δ)/2

= O(m
−(δ+min(δ,2))/4
1 E| u1√

ρ1

|2+δ)

= o(1),

which implies (2.22). The rest can be shown in the same way.
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Lemma 2.2.6. Under conditions of Theorem 1, we have as min{n1, n2} → ∞

√
m

m1m2

m2∑
j=1

m1∑
i=1

 uij√
ρ

vij√
τ

 d→ N(0, I2), (2.30)

m

m2
1m

2
2ρ

m1∑
k=1

(
m2∑
j=1

ukj

)2

− mρ1

m1ρ

p→ 0, (2.31)

m

m2
1m

2
2ρ

m2∑
k=1

(
m1∑
i=1

uik

)2

− mρ2

m2ρ

p→ 0, (2.32)

m

m2
1m

2
2τ

m1∑
k=1

(
m2∑
j=1

vkj

)2

− mτ1
m1τ

p→ 0, (2.33)

m

m2
1m

2
2τ

m2∑
k=1

(
m1∑
i=1

vik

)2

− mτ2
m1τ

p→ 0, (2.34)

m

m2
1m

2
2

√
ρτ

m1∑
k=1

(
m2∑
i=1

uki

m2∑
j=1

vkj

)
p→ 0, (2.35)

m

m2
1m

2
2

√
ρτ

m2∑
k=1

(
m1∑
i=1

uik

m1∑
j=1

vjk

)
p→ 0, (2.36)

where I2 is the 2× 2 identity matrix.

Proof. It follows from Lemma 2.2.5 that

√
m

m1m2

m2∑
j=1

m1∑
i=1

uij√
ρ

=

√
m

m1m2
√
ρ

m2∑
j=1

m1∑
i=1

(XT
i X̄i + Y T

j Ȳj −XT
i Ȳj − Y T

j X̄i)

=

√
m

m1
√
ρ

m1∑
i=1

XT
i X̄i +

√
m

m2
√
ρ

m2∑
j=1

Y T
j Ȳj −

√
m

m1m2
√
ρ

m2∑
j=1

m1∑
i=1

(XT
i Ȳj + Y T

j X̄i)

=

√
mρ1√
m1ρ

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

+

√
mρ2√
m2ρ

1
√
m2

m2∑
j=1

Y T
j Ȳj√
ρ2

+ op(1)

= amAm + bmBm + op(1),

where am =
√
mρ1√
m1ρ

, bm =
√
mρ2√
m2ρ

,

Am =
1

√
m1

m1∑
i=1

XT
i X̄i√
ρ1

d→ N(0, 1)
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and

Bm =
1

√
m2

m2∑
j=1

Y T
j Ȳj√
ρ2

d→ N(0, 1).

Obviously a2
m + b2m = 1 and Am, Bm are independent. Denote the characteristic

functions of Am and Bm by Φm and Ψm, respectively. Then,

E exp(it(amAm + bmBm)) = E exp(itamAm)E exp(itbmBm)

= Φm(tam)Ψm(tbm)

= [exp(−(tam)2

2
) + o(1)][exp(−(tbm)2

2
) + o(1)]

= exp(−t
2

2
) + o(1),

i.e., √
m

m1m2

m2∑
j=1

m1∑
i=1

uij√
ρ

d→ N(0, 1). (2.37)

Similarly, we have

√
m

m1m2

m2∑
j=1

m1∑
i=1

vij√
τ

=

√
mτ1√
m1τ

1
√
m1

m1∑
i=1

(Xi + X̄i)
T1p√

τ1
−
√
mτ2√
m2τ

1
√
m2

m2∑
j=1

(Yj + Ȳj)
T1p√

τ2

d→ N(0, 1).

Let a and b be two real numbers with a2 + b2 6= 0. Note that

√
m

m1m2

m2∑
j=1

m1∑
i=1

(a
uij√
ρ

+ b
vij√
τ
)

= a

(√
mρ1√
m1ρ

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

−
√
mρ2√
m2ρ

1
√
m2

m2∑
j=1

Y T
j Ȳj√
ρ2

)

+b

(√
mτ1√
m1τ

1
√
m1

m1∑
i=1

(Xi + X̄i)1p√
τ1

+

√
mτ2√
m2τ

1
√
m2

m2∑
j=1

(Yj + Ȳj)
T1p√

τ2

)
+ op(1)

=

(
a
√
mρ1√
m1ρ

1
√
m1

m1∑
i=1

XT
i X̄i√
ρ1

+
b
√
mτ1√
m1τ

1
√
m1

m1∑
i=1

(Xi + X̄i)1p√
τ1

)

+

(
a
√
mρ2√
m2ρ

1
√
m2

m2∑
j=1

Y T
j Ȳj√
ρ2

−
b
√
mτ2√
m2τ

1
√
m2

m2∑
j=1

(Yj + Ȳj)
T1p√

τ2

)
+ op(1)

= I1 + I2 + op(1).
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Since
√
mρ1√
m1ρ

,
√
mρ2√
m2ρ

,
√
mτ1√
m1τ

,
√
mτ2√
m2τ

are all bounded by one, it is easy to check that I1 and

I2 satisfy the Lyapunov condition by (2.11) - (2.14). Therefore

{a2mρ1

m1ρ
+ b2

mτ1
m1τ

}−1/2I1
p→ N(0, 1)

and

{a2mρ2

m2ρ
+ b2

mτ2
m2τ

}−1/2I2
p→ N(0, 1).

Since X ′
is are independent of Y ′

i s, it follows from the same arguments in proving

(2.37) that

I1 + I2
p→ N(0, a2 + b2),

i.e., (2.30) holds.

To prove (2.31), we write

m
m2

1m
2
2ρ

∑m1

k=1

(∑m2

j=1 ukj

)2

= m
m2

1m
2
2ρ

∑m1

k=1

(∑m2

j=1(X
T
k X̄k + Y T

j Ȳj − Y T
j X̄k −XT

k Ȳj)
)2

= m
m2

1ρ

∑m1

k=1

(
XT
k X̄k + 1

m2

∑m2

j=1 Y
T
j Ȳj − 1

m2

∑m2

j=1 Y
T
j X̄k −XT

k
1
m2

∑m2

j=1 Ȳj

)2

.

(2.38)

Since mρ1/m1ρ ≤ 1, it follows from Lemma 2.2.5 that

m

m2
1ρ

m1∑
k=1

(XT
k X̄k)

2 − mρ1

m1ρ

p→ 0. (2.39)

By Lemma 2.2.4, we have

m

m2
1ρ

m1∑
k=1

(
1

m2

m2∑
j=1

Y T
j Ȳj

)2

= Op(
mρ2

m1m2ρ
) = op(1). (2.40)
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A direct calculation shows that

E{ 1
m2

∑m2

j=1 Y
T
j X̄k}2

= E{( 1
m2

∑m2

j=1 Y
T
j )X̄kX̄

T
k ( 1

m2

∑m2

j=1 Yj)}

= Etr{ 1
m2

∑m2

j=1 Y
T
j X̄kX̄

T
k ( 1

m2

∑m2

j=1 Yj)}

= Etr{X̄kX̄
T
k ( 1

m2

∑m2

j=1 Yj)(
1
m2

∑m2

i=1 Y
T
i )}

= trE{X̄kX̄
T
k ( 1

m2

∑m2

j=1 Yj)(
1
m2

∑m2

i=1 Y
T
i )}

= tr{Σ 1
m2

Σ̄}

= O(ρ1+ρ2
m2

)

= O( m1ρ
m2m

) +O( ρ2
m2

)

= o(m1ρ
m

),

which implies that

m

m2
1ρ

m1∑
k=1

{ 1

m2

m2∑
j=1

Y T
j X̄k}2 = op(1). (2.41)

Here tr means trace for a matrix. Similarly we have

m

m2
1ρ

m1∑
k=1

{XT
k

1

m2

m2∑
j=1

Ȳj}2 = op(1). (2.42)

It follows from (2.39) and (2.41) that

| m
m2

1ρ

∑m1

k=1(X
T
k X̄k)(

1
m2

∑m2

j=1 Y
T
j X̄k)|

≤ { m
m2

1ρ

∑m1

k=1(X
T
k X̄k)

2}1/2{ m
m2

1ρ

∑m1

k=1(
1
m2

∑m2

j=1 Y
T
j X̄k)

2}1/2

= Op(1)op(1) = op(1).

(2.43)

Similarly we can show that

m
m2

1ρ

∑m1

k=1(X
T
k X̄k)(

1
m2

∑m2

j=1 Y
T
j Ȳj) = op(1)

m
m2

1ρ

∑m1

k=1(X
T
k X̄k)(X

T
k

1
m2

∑m2

j=1 Ȳ
T
j ) = op(1)

m
m2

1ρ

∑m1

k=1(
1
m2

∑m2

j=1 Y
T
j Ȳj)(

1
m2

∑m2

i=1 Y
T
i X̄k) = op(1)

m
m2

1ρ

∑m1

k=1(
1
m2

∑m2

j=1 Y
T
j Ȳj)(X

T
k

1
m2

∑m2

i=1 Ȳi) = op(1)

m
m2

1ρ

∑m1

k=1(
1
m2

∑m2

j=1 Y
T
j X̄k)(X

T
k

1
m2

∑m2

i=1 Yi) = op(1).

(2.44)

Hence (2.31) follows from (2.38)–(2.44). The rest can be shown in the same way as

proving (2.31).
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Lemma 2.2.7. Under conditions of Theorem 1, we have as min{n1, n2} → ∞

1√
m

m∑
k=1

 Zk,1√
ρ

Zk,2√
τ

 d→ N(0, I2), (2.45)

1

mρ

m∑
k=1

Z2
k,1 − 1

p→ 0, (2.46)

1

mτ

m∑
k=1

Z2
k,2 − 1

p→ 0, (2.47)

1

m
√
ρτ

m∑
k=1

Zk,1Zk,2
p→ 0. (2.48)

Moreover, we have

max
1≤k≤m

|Zk,1√
ρ
| = op(m

1/2) and max
1≤k≤m

|Zk,2√
τ
| = op(m

1/2). (2.49)

Proof. Note that for 1 ≤ k ≤ m1,

Zk,1 =
−1

(m1 − 1)m1

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m1 − 1)m2

m2∑
j=1

ukj,

Zk,2 =
−1

(m1 − 1)m1

m2∑
j=1

m1∑
i=1

vij +
m1 +m2 − 1

(m1 − 1)m2

m2∑
j=1

vkj,

and for m1 + 1 ≤ k ≤ m,

Zk,1 =
−1

(m2 − 1)m2

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m2 − 1)m1

m1∑
i=1

ui,k−m1 ,

Zk,2 =
−1

(m2 − 1)m2

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m2 − 1)m1

m1∑
i=1

vi,k−m1 .

Thus

1√
m

m∑
k=1

Zk,1√
ρ

=
1√
m

(
−1

m2 − 1
+

−1

m1 − 1
+
m1 +m2 − 1

(m1 − 1)m2

+
m1 +m2 − 1

(m2 − 1)m1

)

m2∑
j=1

m1∑
i=1

uij√
ρ

=

√
m

m1m2

m2∑
j=1

m1∑
i=1

uij√
ρ

and

1√
m

m∑
k=1

Zk,2√
τ

=

√
m

m1m2

m2∑
j=1

m1∑
i=1

vij√
τ
,
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which imply (2.45) by using Lemma 2.2.6.

It follows from Lemma 2.2.6 that

1

mρ

m∑
k=1

Z2
k,1

=
1

mρ

m1∑
k=1

(
−1

(m1 − 1)m1

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m1 − 1)m2

m2∑
j=1

ukj

)2

+
1

mρ

m2∑
k=1

(
−1

(m2 − 1)m2

m2∑
j=1

m1∑
i=1

uij +
m1 +m2 − 1

(m2 − 1)m1

m1∑
i=1

uik

)2

= { 1

(m1 − 1)
√
m1mρ

m2∑
j=1

m1∑
i=1

uij}2 +
(m− 1)2

(m1 − 1)2m2
2mρ

m1∑
k=1

(

m2∑
j=1

ukj)
2

−2{( m− 1

mρ(m1 − 1)2m1m2

)1/2

m2∑
j=1

m1∑
i=1

uij}2 + { 1

(m2 − 1)
√
m2mρ

m2∑
j=1

m1∑
i=1

uij}2

+
(m− 1)2

mρ(m2 − 1)2m2
1

m2∑
k=1

(

m1∑
i=1

uik)
2 − 2{( m− 1

mρ(m2 − 1)2m2m1

)1/2

m2∑
j=1

m1∑
i=1

uij}2

= {Op(
1

m1
√
m1m

m1m2√
m

)}2 +
(m− 1)2m2

1

(m1 − 1)2m2
{mρ1

m1ρ
+ op(1)}+ {Op(

1

m1
√
m1m2

m1m2√
m

)}2

+{Op(
1

m2
√
m2m

m1m2√
m

)}2 +
(m− 1)2m2

2

m2(m2 − 1)2
{mρ2

m2ρ
+ op(1)}+ {Op(

1

m2
√
m2m1

m1m2√
m

)}2

=
mρ1

m1ρ
+
mρ2

m2ρ
+ op(1)

= 1 + op(1),

i.e., (2.46) holds. Similarly we can show (2.47) and (2.48).

Since Var(
∑m1

i=1 uij) = m1(ρ1 + ρ2), we have

lim
x→∞

xP (|
m1∑
i=1

uij| >
√
xm1(ρ1 + ρ2)) = 0,

which implies that

max
1≤j≤m2

|
m1∑
i=1

uij| = op(
√
m2m1(ρ1 + ρ2)).

Similarly we have

max
1≤1≤m1

|
m2∑
j=1

uij| = op(
√
m2m1(ρ1 + ρ2)).
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Hence by Lemma 2.2.6 and the expression for Zk,1, we have

max1≤k≤m |Zk,1√
ρ
| ≤ 1

(m1−1)m1
|
∑m1

i=1

∑m2

j=1
uij√
ρ
|+ max1≤k≤m1 | m−1

(m1−1)m2

∑m2

j=1
ukj√
ρ
|

+ 1
(m2−1)m2

|
∑m1

i=1

∑m2

j=1
uij√
ρ
|+ max1≤k≤m2 | m−1

(m2−1)m1

∑m1

j=1
ujk√
ρ
|

= op(1) + op(
m−1

(m1−1)m2
√
ρ
{m1m2(ρ1 + ρ2)}1/2)

+op(1) + op(
m−1

(m2−1)m1
√
ρ
{m1m2(ρ1 + ρ2)}1/2)

= op(m
1/2).

Similarly we can show that

max
1≤k≤m

|Zk,2√
τ
| = op(m

1/2).

Proof of Theorem 2.2.1. It follows from Lemma 2.2.7 and the standard arguments in

empirical likelihood method (see Owen [72]). 2

To show Corollary 2.2.2 and Theorem 2.2.3, we first prove the following lemmas.

Lemma 2.2.8. tr(Σ4) = O
(
(tr(Σ2))2

)
, ρ1 =

∑p
j=1 λ

2
j , and 2pλ1 ≤ τ1 ≤ 2pλp.

Proof. Since tr(Σj) =
∑p

i=1 λ
j
i for any positive integer j, the first equality follows

immediately. The second equality follows since ρ1 = tr(Σ2). The third inequalities

on τ1 are obvious. 2

Lemma 2.2.9. For any δ > 0

E|XT
1 X̄1|2+δ ≤ pδ

(
p∑
i=1

E|X1,i|2+δ
)2

and

E|1Tp (X1 + X̄1)|2+δ ≤ 24+δp1+δ

p∑
i=1

E|X1,i|2+δ.

Proof. It follows from the Cauchy-Schwarz inequality that

|XT
1 X̄1|2 ≤ ||X1||2||X̄1||2.
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Then by using the Cr inequality we conclude that

E|XT
1 X̄1|2+δ ≤ E

(
p∑
i=1

X2
1,i

)(2+δ)/2

E

(
p∑
i=1

X̄2
1,i

)(2+δ)/2

=

E

(
p∑
i=1

X2
1,i

)(2+δ)/2
2

≤

(
pδ/2

p∑
i=1

E|X1,i|2+δ
)2

= pδ

(
p∑
i=1

E|X1,i|2+δ
)2

.

Similarly, from the Cr inequality we have

E|1Tp (X1 + X̄1)|2+δ ≤ 24+δE

(
p∑
i=1

|X1,i|

)2+δ

≤ 24+δp1+δ

p∑
i=1

E|X1,i|2+δ.

This completes the proof. 2

Proof of Corollary 2.2.2. Equations (2.11) and (2.13) follow from conditions (A1)–

(A3) by using Lemmas 2.2.8 and 2.2.9. So do equations (2.12) and (2.14), since we

have the same assumptions on {Xi} and {Yj}. 2

Proof of Theorem 2.2.3. If suffices to verify conditions (2.11) and (2.13) with δ = 2 in

Theorem 2.2.1. Recall we assume that µ1 = µ2 = 0. Note that Var(X1) = Σ = Γ1Γ
T
1 .

Denote 1Tp Γ1 = (a1, · · · , ak) and Σ′ = ΓT1 Γ1 = (σ′j,l)1≤j,l≤k. Then

XT
1 X̄1 =

k∑
j=1

k∑
l=1

σ′j,lB1,jB1+m1,l,

and

1Tp (X1 + X̄1) =
k∑
j=1

aj(B1,j +B1+m1,j).

Set δj1,j2,j3,j4 = E(B1,j1B1,j2B1,j3B1,j4). Then δj1,j2,j3,j4 equals 3 + ξ1 if j1 = j2 =

j3 = j4, equals 1 if j1, j2, j3 and j4 form two different pairs of integers, and is zero
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otherwise. By Lemma 2.2.8, we have

E(XT
1 X̄1)

4 =
k∑

j1,j2,j3,j4=1

k∑
l1,l2,l3,l4=1

σ′j1,l1σ
′
j2,l2

σ′j3,l3σ
′
j4,l4

δj1,j2,j3,j4δl1,l2,l3,l4

= O
(
|
∑

j1 6=j2
∑

l1 6=l2 σ
′
j1,l1

σ′j1,l2σ
′
j2,l1

σ′j2,l2|
)

+O
(∑

j1 6=j2
∑k

l=1 σ
′2
j1,l
σ′2j2,l

)
+O

(∑k
j=1

∑
l1 6=l2 σ

′2
j,l1
σ′2j,l2

)
+O

(∑k
j=1

∑k
l=1 σ

′4
j,l

)
= O

(
|
∑k

j1=1

∑k
j2=1

∑k
l1=1

∑k
l2=1 σ

′
j1,l1

σ′j1,l2σ
′
j2,l1

σ′j2,l2|
)

+O
(∑k

j1=1

∑k
j2=1

∑k
l=1 σ

′2
j1,l
σ′2j2,l

)
+O

(∑k
j=1

∑k
l=1 σ

′4
j,l

)
= O (tr(Σ′4)) +O

(∑k
j=1

∑k
l=1 σ

′2
j,l)

2
)

= O (tr(Σ′4)) +O ((tr(Σ′2))2)

= O (tr(Σ4)) +O ((tr(Σ2))2)

= o
(
m(tr(Σ2))2

)
,

i.e., (2.11) holds with δ = 2.

Similarly we have

E(1Tp (X1 + X̄1))
4 ≤ 24E

( k∑
j=1

ajB1,j

)4

= O

(
k∑

j1,j2=1

a2
j1
a2
j2

)
+O

(
k∑
j=1

a4
j

)

= O

(( k∑
j=1

a2
j

)2
)

= O

((
1Tp Γ1Γ

T
1 1p

)2
)

= O

(( p∑
i=1

p∑
j=1

σi,j

)2
)
,

which yields (2.13) with δ = 2. Equations (2.12) and (2.14) can be shown in the same

way. Hence Theorem 2.2.3 follows from Theorem 2.2.1. 2

2.3 Test for High-dimensional Linear Models

Linear model is a common technique to fit the relationship between responses and

covariates. Statistical inference can be based on either the least squares estimator or
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M-estimator for the coefficients. However, the asymptotic behavior generally depends

on whether the number of covariates is fixed or goes to infinity as the sample size

tends to infinity. In this section, we propose an empirical likelihood method for testing

whether the coefficients are equal to the given values. The asymptotic distribution

of the proposed test is independent of the number of covariates in the linear model.

A simulation study shows that the proposed test performs well in terms of both size

and power.

2.3.1 Introduction

In order to model the relationship between responses and covariates, regression model

is a commonly employed technique. Consider the following classic linear regression

model

Yi = βTXi + εi, i = 1, · · · , n, (2.50)

where β = (β1, · · · , βp)T is the vector of unknown parameters, X1 = (X1,1, · · · , X1,p)
T ,

· · · , Xn = (Xn,1, · · · , Xn,p)
T are i.i.d random vectors, ε1, · · · , εn are independent and

identically distributed random variables with zero mean and variance σ2, and X ′
is and

ε′is are independent. Statistical inference for β can be based on either least squares

estimator or M-estimator when p is fixed. When p depends on the sample size n and

goes to infinity as n → ∞, Portnoy [79, 80] studied the consistency and asymptotic

normality of M-estimators for β, which requires that p can not be too large.

Motivated by the studies in bioinformatics and other fields, statistical inference

for the linear model (2.50) is needed for the case when p is of an exponential order

of n, but many of β′is are zero. To deal with this case, one first selects variables with

nonzero β′is and then makes statistical inference for the selected nonzero β′is. It is

not surprising that the order of the number of nonzero β′is can not be larger than

the optimal one in Portnoy [80]. We refer to Bradic, Fan and Wang [10] for more

details and references on the ultrahigh dimensional situation. In this section we are
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interested in testing H0 : β = β0 against β 6= β0 for a given value β0 ∈ Rp when p is

either fixed or goes to infinity as n→∞.

When p is fixed, a traditional test is the Hotelling’s T 2 test defined as

HT =
1

σ̂2
(β̂ − β0)

T

(
1

n

n∑
i=1

XiX
T
i

)−1

(β̂ − β0), (2.51)

where β̂ = ( 1
n

∑n
i=1XiX

T
i )−1 1

n

∑n
i=1 YiXi and σ̂2 = 1

n

∑n
i=1(Yi − β̂TXi)

2. It is known

that HT
d→ χ2

p as n → ∞. However, when p is large, finding the inverse matrix in

(2.51) becomes problematic.

As a powerful nonparametric likelihood approach, empirical likelihood test is an-

other useful method. More specifically, write zi = Xi(Yi−XT
i β) for i = 1, · · · , n and

define the empirical likelihood function for β as

Ln1(β) = sup{
n∏
i=1

(nqi) : q1 ≥ 0, · · · , qn ≥ 0,
n∑
i=1

qi = 1,
n∑
i=1

qizi = 0}.

Under some regularity conditions, one can show that the Wilks’ Theorem holds,

i.e., −2 logLn1(β0) converges in distribution to a chi-square limit with p degrees of

freedom. Therefore, the empirical likelihood test can be constructed by using the

test statistic −2 logLn1(β). See Owen [73] for more details on empirical likelihood

methods. However, the maximization in computing Ln1(β) becomes nontrivial and

even unavailable when p is large; see Chen, Variyath, and Abraham [20] for discussions

on this phenomena. Empirical likelihood method for high dimensional data can be

found in Chen, Peng and Qin [15] and Hjort, McKeague and Van Keilegom [45].

Considering the difficulties in the above methods, in this section we propose a new

empirical likelihood test for testing H0 : β = β0 by splitting the data into two parts.

It turns out the new method works for both fixed and divergent p.

We organize the whole section as follows. Section 2.3.2 presents the new method-

ology and main results. A simulation study is given in Section 2.3.3. All proofs are

put in Section 2.3.4.

46



www.manaraa.com

2.3.2 Methodology

Put m = [n/2], the integer part of n/2, and define X̃i = Xm+i, Ỹi = Yi+m, ε̃i = εi+m,

Wi(β) = (YiXi −XiX
T
i β)T (ỸiX̃i − X̃iX̃

T
i β)

for i = 1, · · · ,m. Then

EWi(β) = E{(XiX
T
i (β0− β) +Xiεi)

T (X̃iX̃
T
i (β0− β) + X̃iε̃i)} = (β0− β)TΣ2(β0− β),

where Σ = E(X1X
T
1 ). When Σ is positive definite, testing H0 : β = β0 against

Ha : β 6= β0 is equivalent to testing H0 : EW1(β) = 0 against Ha : EW1(β) 6= 0. This

motivates us to apply the empirical likelihood method in Qin and Lawless [82] to the

estimating equation EW1(β0) = 0. However this direct application results in a poor

power in general by noting that EW1(β) = O(||β−β0||2) instead of O(||β−β0||) when

||β − β0|| is small, where || · || denotes the L2 norm of a vector.

To improve the power, we propose to add one more linear equation EW ∗
1 (β0) = 0

where EW ∗
1 (β) = O(||β − β0||) and thus it catches the small change of β − β0. More

specifically, define

W ∗
i (β) = (YiXi −XiX

T
i β)T1p + (ỸiX̃i − X̃iX̃

T
i β)T1p

for i = 1, · · · ,m, where 1p = (1, 1, · · · , 1)T ∈ Rp, and then define the empirical

likelihood function for β as

Ln2(β) = sup{
m∏
i=1

(mqi) : q1 ≥ 0, · · · , qm ≥ 0,
m∑
i=1

qi = 1,
m∑
i=1

qiWi(β) = 0,
m∑
i=1

qiW
∗
i (β) = 0}.

By the Lagrange multiplier technique, we have

−2 logLn2(β) = 2
m∑
i=1

log{1 + b1Wi(β) + b2W
∗
i (β)}, (2.52)

where b1 = b1(β) and b2 = b2(β) satisfy that
∑m

i=1
Wi(β)

1+b1Wi(β)+b2W ∗
i (β)

= 0,∑m
i=1

W ∗
i (β)

1+b1Wi(β)+b2W ∗
i (β)

= 0.
(2.53)
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The following theorem shows that the Wilks’ Theorem holds for the above em-

pirical likelihood method. As in Section 2.2, we use tr(A) to denote the trace of a

matrix A.

Theorem 2.3.1. Let β0 be the true value of the parameter β. Assume Σ is positively

definite and and there exists some δ > 0 such that

E|XT
1 X̃1|2+δ

{tr(Σ2)}(2+δ)/2

(
E|ε1|2+δ

σ2+δ

)2

= o(m
δ+min(δ,2)

4 ), (2.54)

and

E|XT
1 1p|2+δ

{E(XT
1 1p)2}(2+δ)/2

(
E|ε1|2+δ

σ2+δ

)
= o(m

δ+min(δ,2)
4 ), (2.55)

where σ2 = Var(ε1). Then −2 logLn2(β0) converges in distribution to a chi-square

limit with 2 degrees of freedom.

Remark 2.3.1. The conditions (2.54) and (2.55) can be rephrased as XT
1 X̃1εε̃ and

XT
1 1pε satisfy condition (P).

Remark 2.3.2. The distributions of X1 varies with n as the dimension of X1 changes

with n. In general, the distribution of the error term ε1 may also change with n and

thus the moments of ε1 may not be constants.

Remark 2.3.3. Theorem 2.3.1 deals with large p since the high-dimensional model is

of our interest. When p is small and fixed, the traditional empirical likelihood test

Ln1 defined in the introduction may perform better since the sample size in our test

is n/2 instead of n.

Remark 2.3.4. In Theorem 2.3.1, the condition that Σ is positively definite simply

requires the random variable X1 not to be degenerate. Conditions (2.54) and (2.55)

may impose some restriction on p implicitly.

In the following we will give two examples where little restriction on p is required.

Example 2.3.1. Let X1 be a Gaussian random vector with mean 0 and covariance

matrix Σ = (σi,j)1≤i,j≤p, where Σ is an arbitrary p by p positively definite matrix.

Assume E(ε41)/σ
4 = o(m1/2), then conditions (2.54) and (2.55) hold.
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Example 2.3.2. Assume (X1, · · · , Xn) and (ε1, · · · , εn) satisfy (A), then conditions

(2.54) and (2.55) hold.

The proof of the examples will be put in Section 2.3.4.

Remark 2.3.5. Example 2.3.1 assumes a special dependence structure and it is a

special case of (B). Similar to the test in Chapter 2.2, condition (B) is sufficient for

Theorem 2.3.1.

Remark 2.3.6. One advantage of the proposed empirical likelihood method is that one

can easily add more equations if one has more information on the alternative hypoth-

esis, or replace W ∗
1 (β) by another statistic W̄1(β) satisfying EW̄1(β) = O(||β − β0||).

Although adding more relevant equations may improve the test power, computing the

empirical likelihood function becomes more complicated. The simulation study in the

next section shows that the test using EWi(β) = 0 and EW ∗
i (β) = 0 in Theorem 2.3.1

performs well in terms of both size and power in the dense model.

2.3.3 Simulation study

In this section, we examine the finite sample behavior of the proposed empirical

likelihood test and compare it with the Hotelling’s T 2 test and the standard empirical

likelihood method in terms of both size and power.

Draw 10, 000 random samples with size n = 200, 500 from the linear model (2.50)

with Xi = (Xi1, · · · , Xip)
T ∼ N(0,Σ0), Σ0 = (0.5(|i−j|))1≤i,j≤p, εi ∼ t8 and β =

β0 + δ/
√
n, β0 = 1p. Consider testing H0 : β = β0 against Ha : β 6= β0. We use EL1,

EL2 and HT to denote the empirical likelihood tests −2 logLn1(β), −2 logLn2(β) and

the Hotelling’s T 2 test in (2.51), respectively. We compute the powers of these three

tests and plot them against different p at levels 0.1 and 0.05 in Figures 2.1–2.4. Note

that δ = 0 corresponds to the size of the tests.

From the first plot of each figure we find that the traditional empirical likelihood

method and the Hotelling’s T 2 test do not have a consistent size when p is slightly
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large, while the proposed empirical likelihood test has a very stable size with respect

to p. The other three plots in each figure show that the proposed empirical likelihood

method is powerful too. Note that the power for the traditional empirical likelihood

method and the Hotelling’s T 2 test do not make much sense for a slightly large p

since their sizes do not converge to the nominal levels. When n becomes large, the

proposed empirical likelihood tests have more accurate size.

In summary, the proposed empirical likelihood test has a very stable size with

respect to the number of covariates and are powerful too. The proposed new tests are

easy to implement by using the R package emplik, which does not need to compute

the inverse of a high dimensional covariance matrix.

2.3.4 Proofs

Throughout we denote

ui := Wi(β0) = (XT
i X̃i)εiε̃i, vi := W ∗

i (β0) = (XT
i 1p)εi + (X̃T

i 1p)ε̃i,

σ1 =
√

Var(u1) and σ2 =
√

Var(v1).

Then it is easy to verify that E(u1) = E(v1) = E(u1v1) = 0. One can also easily show

that conditions (2.54) and (2.55) are respectively equivalent to

E|u1|2+δ

σ2+δ
1

= o(m
δ+min(δ,2)

4 ), (2.56)

and

E|v1|2+δ

σ2+δ
2

= o(m
δ+min(δ,2)

4 ). (2.57)

Lemma 2.3.2. Under conditions of Theorem 2.3.1, we have

1√
m

m∑
i=1

(
ui

σ1
vi

σ2

)
d→ N(0, I2), (2.58)

∑m
i=1 u

2
i

mσ2
1

− 1
p→ 0, (2.59)
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Figure 2.1: Powers of tests are plotted against p = 2, 4, · · · , 100 with level 0.01 and
n = 200.
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Figure 2.2: Powers of tests are plotted against p = 2, 4, · · · , 100 with level 0.05 and
n = 200.
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Figure 2.3: Powers of tests are plotted against p = 2, 4, · · · , 100 with level 0.01 and
n = 500.
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Figure 2.4: Powers of tests are plotted against p = 2, 4, · · · , 100 with level 0.05 and
n = 500.
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∑m
i=1 v

2
i

mσ2
2

− 1
p→ 0, (2.60)∑m

i=1 uivi
mσ1σ2

p→ 0, (2.61)

max
1≤i≤m

|ui
σ1

| = op(m
1/2) and max

1≤i≤m
| vi
σ2

| = op(m
1/2), (2.62)

where I2 is a 2× 2 identity matrix.

Proof. Note that u1 and v1 are uncorrelated. To show (2.58) we need to prove that

for any constants a and b with a2 + b2 6= 0,

1√
m

m∑
i=1

(a
ui
σ1

+ b
vi
σ2

)
d→ N(0, a2 + b2).

Apparently {a ui

σ1
+ b vi

σ2
, 1 ≤ i ≤ m} are independent and identically distributed

random variables with variance a2 + b2. Therefore we shall verify the Lindeberg

condition for the triangular array {a ui

σ1
+ b vi

σ2
, 1 ≤ i ≤ m}. It suffices to show the

Lyapunov condition

1

m(2+δ)/2

m∑
i=1

E|aui
σ1

+ b
vi
σ2

|2+δ → 0 (2.63)

holds. This follows from the fact that the left-hand side of (2.63) is dominated by

mE|a ui

σ1
+ b vi

σ2
|2+δ

m(2+δ)/2
≤ (|a|+ |b|)2+δ

(
E|u1

σ1

|2+δ + E|v1

σ2

|2+δ
)

1

mδ/2

= o(m
δ+min(δ,2)

4
− δ

2 )

= o(1).

To show (2.59), we need to estimate E|
∑m

i=1 u
2
i −mσ2

1|(2+δ)/2. We have from von

Bahr and Esseen [98] that

E|
m∑
i=1

u2
i −mσ2

1|(2+δ)/2 ≤ 2mE|u2
1 − E(u2

1)|(2+δ/2) = O(mE|u1|2+δ) (2.64)

if 0 < δ ≤ 2, and from Dharmadhikari and Jogdeo [28] that

E|
m∑
i=1

u2
i −mσ2

1|(2+δ)/2 ≤ Cm(2+δ)/4E|u2
1−E(u2

1)|(2+δ/2) = O(m(2+δ)/4E|u1|2+δ) (2.65)
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if δ > 2. Therefore, by (2.64), (2.65) and (2.56), we have for any ε > 0

P(|
∑m

i=1 u
2
i

mσ2
1

− 1| > ε)

≤ ε−(2+δ)/2 E|
∑m

i=1 u
2
i −mσ2

1|(2+δ)/2

(mσ2
1)

(2+δ)/2

= O(m−(δ+min(δ,2))/4E|u1

σ1

|2+δ)

= o(1),

which implies (2.59). Similarly we can show (2.60) and (2.61). Equation (2.62) follows

from the Lyapunov condition (2.63) by letting a = 1 and b = 0 or a = 0 and b = 1.

This completes the proof of the lemma. 2

Proof of Theorem 2.3.1. Set Zi = (ui/σ1, vi/σ2)
T for i = 1 . . . ,m. It follows from

Lemma 2.3.2 that

1√
m

m∑
i=1

Zi
d→ N(0, I2), (2.66)

|| 1
m

m∑
i=1

Zi(Zi)
T − I2||

p→ 0, (2.67)

max
1≤i≤m

||Zi|| = op(m
1/2). (2.68)

Put ρ = (ρ1, ρ2)
T = (b1σ1, b2σ2)

T with b1 and b2 being given in (2.52) and (3.34).

Then we have

−2 logLn2(β0) = 2
m∑
i=1

log(1 + ρTZi),

where ρ solves
m∑
i=1

Zi
1 + ρTZi

= 0. (2.69)

Similar to the proof of (2.14) in Owen [72] we can show
√
ρ2

1 + ρ2
2 = Op(m

−1/2).

Then it follows from (2.68) that

max
1≤i≤m

|| ρTZi
1 + ρTZi

|| = op(1).
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By (2.69), we have

0 =
1

m

m∑
i=1

ρTZi
1 + ρTZi

=
1

m

m∑
i=1

ρTZi(1− ρZi +
(ρTZi)

2

1 + ρTZi
)

=
1

m

m∑
i=1

ρTZi −
1

m

m∑
i=1

(ρTZi)
2 +

1

m

m∑
i=1

(ρTZi)
3

1 + ρTZi
)

=
1

m

m∑
i=1

ρTZi −
(1 + op(1))

m

m∑
i=1

(ρTZi)
2,

which implies

1

m

m∑
i=1

ρTZi =
(1 + op(1))

m

m∑
i=1

(ρTZi)
2. (2.70)

Using (2.69) and (2.67) we obtain

0 =
1

m

m∑
i=1

Zi
1 + ρTZi

=
1

m

m∑
i=1

Zi(1− ρZi +
(ρTZi)

2

1 + ρTZi
)

=
1

m

m∑
i=1

Zi −
1

m

m∑
i=1

Zi(Zi)
Tρ+

1

m

n∑
i=1

Zi(ρ
TZi)

2

1 + ρTZi
)

=
1

m

m∑
i=1

Zi −
1

m

m∑
i=1

Zi(Zi)
Tρ+Op

(
max

1≤i≤m
|| Zi

1 + ρTZi
|| 1
m

n∑
i=1

(ρTZi)
2

)

=
1

m

m∑
i=1

Zi −
1

m

m∑
i=1

Zi(Zi)
Tρ+ op

(
m1/2ρT

( 1

m

n∑
i=1

Zi(Zi)
T
)
ρ

)

=
1

m

m∑
i=1

Zi −
1

m

m∑
i=1

Zi(Zi)
Tρ+ op(m

−1/2)

which implies

ρ =

(
1

m

m∑
i=1

Zi(Zi)
T

)−1
1

m

m∑
i=1

Zi + op(m
−1/2). (2.71)
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Finally by using Taylor’s expansion, (2.70), (2.71), (2.66) and (2.67) we obtain

−2 logLn2(β0) = 2
m∑
i=1

ρTZi − (1 + op(1))
m∑
i=1

(ρTZi)
2
)

= (1 + op(1))ρ
T

(
m∑
i=1

Zi(Zi)
T

)
ρ

= (1 + op(1))
( 1√

m

m∑
i=1

Zi
)T ( 1

m

m∑
i=1

Zi(Zi)
T

)−1
1√
m

m∑
i=1

Zi + op(1)

d→ χ2
2.

This completes the proof of Theorem 2.3.1. 2

Proof of Example 1. Set

(x1, · · · , xp)T = Σ−1/2X1 and (y1, · · · , yp)T = Σ−1/2X̃1.

Then x1, · · · , xp, y1, · · · , yp are independent standard normal random variables. There-

fore we have X1 = Σ1/2(x1, · · · , xp)T and X̃1 = Σ1/2(y1, · · · , yp)T , and

XT
1 X̃1 = (x1, · · · , xp)Σ(y1, · · · , yp)T =

∑
1≤i,j≤p

σi,jxiyj.

In order to estimate E(XT
1 X̃1)

4, we set δj1,j2,j3,j4 = E(xj1xj2xj3xj4) = E(yj1yj2yj3yj4).

Then δj1,j2,j3,j4 is equal to 3 if j1 = j2 = j3 = j4, 1 if j1, j2, j3 and j4 are two different

pairs of integers, and 0 otherwise.
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Then we have

E(XT
1 X̃1)

4 =
∑

1≤j1,j2,j3,j4≤p

∑
1≤l1,l2,l3,l4≤p

σj1,l1σj2,l2σj3,l3σj4,l4δj1,j2,j3,j4δl1,l2,l3,l4

= O

(
|
∑
j1 6=j2

∑
l1 6=l2

σj1,l1σj1,l2σj2,l1σj2,l2|

)
+O

(∑
j1 6=j2

p∑
l=1

σ2
j1,l
σ2
j2,l

)

+O

(
p∑
j=1

∑
l1 6=l2

σ2
j,l1
σ2
j,l2

)
+O

(
p∑
j=1

p∑
l=1

σ4
j,l

)

= O

(
|

p∑
j1=1

p∑
j2=1

p∑
l1=1

p∑
l2=1

σj1,l1σj1,l2σj2,l1σj2,l2 |

)

+O

(
p∑

j1=1

p∑
j2=1

p∑
l=1

σ2
j1,l
σ2
j2,l

)
+O

(
p∑
j=1

p∑
l=1

σ4
j,l

)

= O
(
tr(Σ4)

)
+O

(
(

p∑
j=1

p∑
l=1

σ2
j,l)

2

)
= O

(
tr(Σ4)

)
+O

(
(tr(Σ2))2

)
= O

(
(tr(Σ2))2

)
.

We have used the inequality tr(Σ4) ≤ (tr(Σ2))2, which follows from the identity

tr(Σi) =
∑p

j=1 λ
i
j for any positive integer i, where λ1, · · · , λp are eigenvalues of Σ.

Thus we have that
E(XT

1 X̃1)
4

(tr(Σ2))2
= O(1) is bounded uniformly for p.

Similarly, we can show that the first term on the left-hand side of (2.55) is also

bounded uniformly for p. Therefore, conditions (2.54) and (2.55) will be fulfilled with

δ = 2 for any p if E(ε41)/σ
4 = o(m1/2).

Proof of Example 2. It follows from the same argument in the proof of Corollary

2.2.2.

2.4 Tests for High-dimensional Covariance Matrices

Testing covariance structure is of importance in many areas of statistical analysis, such

as microarray analysis and signal processing. Conventional tests for finite-dimensional

covariance can not be applied to high-dimensional data in general, and tests for high-

dimensional covariance in the literature usually depend on some special structure
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of the matrix. In this section, we propose an empirical likelihood method to test

the covariance matrix by simply splitting the data into two groups. The asymptotic

distribution of the new test is independent of the dimension. A simulation study

shows that the new test has a very stable size with respect to the dimension and it

is also more powerful than the test proposed by Cai and Jiang [12] for testing the

bandedness of a covariance matrix in the dense model.

2.4.1 Introduction

Let Xi = (Xi1, . . . , Xip), i = 1, 2, . . . , n be independent and identically distributed

(i.i.d.) random vectors with mean µ = (µ1, . . . , µp) and covariance Σ = (σij)1≤i,j≤p.

Testing covariance matrix

H0 : Σ = Σ0 against H1 : Σ 6= Σ0 (2.72)

is an important problem in statistical inference and applications. There has been a

long history for the study of this problem. Traditional methods for testing (2.72) with

finite p include the likelihood ratio test (see Anderson [1]) and the scaled distance

measure defined as

V =
1

p
tr
(
Sn − Ip

)2

, (2.73)

where tr(·) denotes the trace of a matrix and Sn is the sample covariance matrix of

Σ
−1/2
0 Xi (see John ([49, 50]) and Nagao [67]). When dealing with high-dimensional

data, the sample covariance in the likelihood ratio test is no longer invertible with

probability one and the tests based on a scaled distance may also fail as demonstrated

in Ledoit and Wolf [62].

Since the above conventional tests can not be employed for testing high-dimensional

covariance matrix, new methods are needed. When the high-dimensional covariance

matrix has a modest dimension p compared to the sample size n, i.e. p/n → c for

some c ∈ (0,∞), Ledoit and Wolf [62] proposed a test by modifying the scaled dis-

tance measure V defined in (2.73) under the assumption that X1 is a normal random
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vector. When the dimension p is much larger than the sample size n, some special

structure has to be imposed. Chen, Zhang and Zhong [18] proposed a test which

generalizes the result of Ledoit and Wolf [62] to the case of non-normal distribution

and large dimension by assuming that

Xi = ΓZi + µ

for some i.i.d. m-dimensional random vectors {Zi} with EZ1 = 0, var(Z1) = Im, and

Γ is a p×m constant matrix with ΓΓT = Σ.

Another commonly employed special structure is sparsity. High-dimensional sparse

data setting, where dimension p is larger than the sample size n, is frequently encoun-

tered in signal processing and gene expression experiments, see for example Sebastini,

Gussoni, Kohane and Ramoni [89]. Estimating covariance matrix with sparsity has

been actively studied in the recent years. Some recent references are Bickel and Lev-

ina [9], Cai, Zhang and Zhou [14], and Cai and Liu [11]. When the sparsity assumes

that the covariance matrix has a desired banded structure, it becomes important to

test whether the covariance matrix possesses such a desired structure, i.e.

H0 : σij = 0 for all |i− j| ≥ τ, (2.74)

where τ < p is given and may depend on n. Recently, Cai and Jiang [12] proposed to

use the maximum of the absolute values of sample covariances to test (2.74) when X1

has a multivariate Gaussian distribution. However, it is known that the convergence

rate of the normalized maximum to a Gumbel limit is very slow, which means such a

test is not powerful in general.

To get rid of the sparse structure and normality condition in the testing problems

(2.72) and (2.74), we propose to construct tests based on the following equivalent

testing problem. Write

a = (σ11, . . . , σ1p, σ21, . . . , σ2p, . . . , σp1, . . . , σpp)
T .
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Then testing H0 : Σ = Σ0 =: (σ0
ij) is equivalent to testing

a = a0 := (σ0
11, . . . , σ

0
1p, σ

0
21, . . . , σ

0
2p, . . . , σ

0
p1, . . . , σ

0
pp)

T . (2.75)

Put Yi = ((Xi1 − µ1)
2, . . . , (Xi1 − µ1)(Xip − µp), (Xi2 − µ2)(Xi1 − µ1), . . . , (Xip −

µp)
2)T , i = 1, . . . , n. Based on the fact that EYi = a, one can employ the well-known

Hotelling T 2 statistic for finite p or its modified versions for divergent p under some

specific models to test (2.75); see for example Bai and Saranadasa [5] and Chen and

Qin [16].

Another popular test for a mean vector is the empirical likelihood method pro-

posed by Owen [71, 72]. Unfortunately, the asymptotic distribution of the empirical

likelihood ratio test depends on whether the dimension is fixed or diverges; see Hjort,

Mckeague and Van Keilegom [45].

Motivated by the empirical likelihood method in Peng, Qi and Wang [78] for

testing a high dimensional mean vector, we propose to apply the empirical likelihood

method to the following two equations

E[(Y1 − a0)
T (Y2 − a0)] = 0 and E[1Tp2(Y1 + Y2 − 2a0)] = 0, (2.76)

where 1p2 = (1, . . . , 1)T ∈ Rp2 . The first equation in (2.76) ensures the consistence

of the proposed test and the second equation in (2.76) is used to improve the test

power, since using only the first equation will lead to a poor power by noting that

E[(Y1−a0)
T (Y2−a0)] = O(δ2) rather than O(δ) if ||E(Y1−a0)|| = O(δ), where || · || is

the Euclidean norm for a vector. It turns out that the proposed empirical likelihood

test puts no restriction on the sparse structure of the matrix and normality of X1.

When testing (2.74), a similar procedure can be employed; see Section 2 for more

details.

The rest of this section is organized as follows. In Section 2.4.2, we introduce

the new methodology and present the main results. A simulation study is given in

Section 2.4.3. Section 2.4.4 contains the proofs of the main results.
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2.4.2 Methodology

Testing covariance matrix. Let Xi = (Xi1, . . . , Xip), i = 1, . . . , n be independent

and identically distributed observations with mean µ = (µ1, . . . , µp) and covariance

Σ = (σij). Instead of testing the covariance matrix hypothesis (2.72) directly, we

consider testing a p2-dimensional vector a, i.e., testing

H0 : a = (σ11, . . . , σ1p, σ21, . . . , σ2p, . . . , σp1, . . . , σpp)
T

= (σ0
11, . . . , σ

0
1p, σ

0
21, . . . , σ

0
2p, . . . , σ

0
p1, . . . , σ

0
pp)

T =: a0.

When µ is known, for i = 1, . . . , n, we define

Yi = ((Xi1 − µ1)
2, . . . , (Xi1 − µ1)(Xip − µp), (Xi2 − µ2)(Xi1 − µ1), . . . , (Xip − µp)

2)T .

Then E[(Y1 − a0)
T (Y2 − a0)] = 0 is equivalent to H0 : (a − a0)

T (a − a0) = 0,

which is equivalent to H0 : a = a0. A direct application of the empirical likelihood

method to the above estimating equation results in a poor power as explained in the

introduction. A brief simulation study confirms this fact. In order to improve the test

power, we propose to add one more linear equation. Note that with prior information

on the model or more specific alternative hypothesis, a more proper linear equation

may be obtained. With no additional information, any linear equation that detects

the change of order ||a−a0|| is a possible choice theoretically. Here we simply choose

the following functional 1Tp2(Y1 +Y2−2a0). More specifically, we propose to apply the

empirical likelihood method to the following two equations

E{(Y1 − a0)
T (Y2 − a0)} = 0 and E{1Tp2(Y1 + Y2 − 2a0)} = 0.

Of course one can try other linear equations or add more equations to further improve

the power. Simulation study in Section 3 shows that with the above two estimating

equations, the proposed test performs well in terms of both size and power.

In order to obtain an independent paired data (Y1, Y2), we split the sample into

two subsamples with size N = [n/2]. That is, for i = 1, 2, . . . , N , we define Ri(a) =
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(ei(a), vi(a))T , where

ei(a) = (Yi − a)T (Yi+N − a) and vi(a) = 1Tp2(Yi + Yi+N − 2a).

Based on {Ri(a)}Ni=1, we define the empirical likelihood ratio function for a as

L1(a) = sup{
N∏
i=1

(Npi) :
N∑
i=1

pi = 1,
N∑
i=1

piRi(a) = 0, p1 ≥ 0, . . . , pN ≥ 0}. (2.77)

When µ is unknown, instead of using {Ri(a)}Ni=1, we use {R∗
i (a)}Ni=1 where µ is re-

placed by the sample means. That is, put X1
j = 1

N

∑N
i=1Xij and X2

j = 1
N

∑2N
i=N+1Xij

for j = 1, . . . , p, and define

Y ∗
i = ((Xi1−X1

1 )2, . . . , (Xi1−X1
1 )(Xip−X1

p ), (Xi2−X1
2 )(Xi1−X1

1 ), . . . , (Xip−X1
p )

2)T

for i = 1, . . . , N , and

Y ∗
i = ((Xi1−X2

1 )2, . . . , (Xi1−X2
1 )(Xip−X2

p ), (Xi2−X2
2 )(Xi1−X2

1 ), . . . , (Xip−X2
p )

2)T

for i = N + 1, . . . , 2N . Put R∗
i (a) = (e∗i (a), v∗i (a))T , where

e∗i (a) = (Y ∗
i − a)T (Y ∗

i+N − a) and v∗i (a) = 1Tp2(Y
∗
i + Y ∗

i+N − 2a).

Similar to (2.77), define the empirical likelihood ratio function for a as

L2(a) = sup{
N∏
i=1

(Npi) :
N∑
i=1

pi = 1,
N∑
i=1

piR
∗
i (a) = 0, p1 ≥ 0, . . . , pN ≥ 0}. (2.78)

Let q = p2 and Θ = (θij)q×q be the covariance matrix of Y1, i.e., Θ = E[(Y1 −

a)(Y1−a)T ]. Then E(e21(a)) =
∑q

i=1

∑q
j=1 θ

2
ij and E(v2

1(a)) =
∑q

i=1

∑q
j=1 θij. First we

show that Wilks’ Theorem holds for the above empirical likelihood methods without

imposing any special structure. Note that in the following theorems, the condition∑p
i=1

∑p
j=1 σij = E(

∑p
j=1X1j)

2 > 0 simply means that e1(a) and v1(a) are not

constants.
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Theorem 2.4.1. Suppose that
∑p

i=1

∑p
j=1 σij > 0 and for some δ > 0,

max
{

E|e1(a)|2+δ/
( q∑
i=1

q∑
j=1

θ2
ij

) 2+δ
2
, E|v1(a)|2+δ/

( q∑
i=1

q∑
j=1

θij

) 2+δ
2
}

= o(N
δ+min{2,δ}

4 ).(2.79)

Then both −2 logL1(a0) and −2 logL2(a0) converge in distribution to a chi-square

distribution with two degrees of freedom as n→∞.

Remark 2.4.1. (2.79) can be interpreted as e1(a) and v1(a) satisfy condition (P).

Using Theorem 2.4.1, one can test H0 : Σ = Σ0 against Σ 6= Σ0. Condition (2.79)

ensures that the central limit theorem holds for 1√
N

∑N
i=1 ei(a0) and 1√

N

∑N
i=1 vi(a0),

Similar to Section 2.2 and 2.3, the conditions in Theorem 2.4.1 can be simplified by

imposing some conditions on the moments and dimension of X1. Note that here the

sample {Yi} is of size p2.

Corollary 2.4.2. Suppose Y1 satisfy (A), then both −2 logL1(a0) and −2 logL2(a0)

converge in distribution to a chi-square distribution with two degrees of freedom as

n→∞.

Theorem 2.4.3. Suppose {X} satisfies condition (B’) with
∑p

i=1

∑p
j=1 σij > 0. Then

both −2 logL1(a0) and −2 logL2(a0) converge in distribution to a chi-square distri-

bution with two degrees of freedom as n→∞.

Remark 2.4.2. For testing H0 : Σ = Ip, where Ip denotes the p × p identity matrix,

Chen, Zhang and Zhong [18] proposed a test based on the above model and required

p → ∞ as n → ∞. In comparison, the proposed empirical likelihood method works

for both fixed and divergent p.

Testing bandedness. Suppose {Xi} is a sequence of i.i.d. normal random vectors

with mean zero and covariance Σ = (σij)1≤i,j≤p. Cai and Jiang [12] proposed to use

the maximum of the absolute values of the sample correlations (called the coherence)

to test a banded structure

H0 : σij = 0 for all |i− j| ≥ τ, (2.80)

65



www.manaraa.com

where τ < p. It is known that the rate of convergence of coherence to a Gumble

distribution is very slow in general, which results in a not powerful test. Here we

modify the proposed empirical likelihood method to test the above banded structure

as follows.

Define

Y ′
l = (Xl1Xl(1+τ), . . . , Xl1Xlp, Xl2Xl(2+τ), . . . , Xl(p−τ)Xlp)

T , l = 1, . . . , n,

a′ = (σ1(1+τ), . . . , σ1p, σ2(2+τ), . . . , σ(p−τ)p)
T and a

′T
0 = (0, 0, . . . , 0) ∈ R(p−τ)(p+1−τ)/2,

then testing (2.80) is equivalent to testing H0 : a′ = a′0. As before, define

e′i(a
′) = (Y ′

i − a′)T (Y ′
N+i − a′), (2.81)

and

v′i(a
′) = 1T(p−τ)(p+1−τ)/2(Y

′
i + Y ′

N+i − 2a′). (2.82)

Based on R′
i(a

′) = (e′i(a
′), v′i(a

′))T , we define the empirical likelihood function for a′

as

L3(a
′) = sup{

N∏
i=1

(Npi) :
N∑
i=1

pi = 1,
N∑
i=1

piR
′
i(a

′) = 0, pi ≥ 0, i = 1, . . . , N}. (2.83)

Theorem 2.4.4. Suppose that Xi follows the model of Cai and Jiang [12], i.e., Xi ∼

N(0,Σ). Assume C1 ≤ lim infn→∞ min1≤i≤p σii ≤ lim supn→∞ max1≤i≤p σii ≤ C2 for

some constants 0 < C1 ≤ C2 <∞, and τ = o(min{ (
P

1≤i,j≤p σij)

(
P

1≤i,j≤p |σij |)1/2 , (
∑

1≤i,j≤p σ
2
ij)

1/2}).

Then under H0 in (2.80), −2 logL3(a
′
0) converges in distribution to a chi-square dis-

tribution with two degrees of freedom as n→∞.

Remark 2.4.3. The test in Cai and Jiang [12] requires that τ = o(ps) for all s > 0,

log p = o(n1/3). However, the new test only imposes conditions between τ and p.

Note that with more information on the higher-order moments of Xi, one can impose

conditions such as (2.79) in Theorem 2.4.1 for e′i and v′i to test the bandedness so

that the normality assumption is not required.
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The condition τ = o(
∑

1≤i,j≤p σij/(
∑

1≤i,j≤p |σij|)1/2) is sometimes difficult to

check. Next we remove this condition in the above theorem by choosing a differ-

ent linear equation in defining v′i in (2.82). More specifically, define

ṽ′i(a
′) =

t∑
k=1

p∑
j=t+τ

(XikXij − σkj) +
t∑

k=1

p∑
j=t+τ

(XN+i,kXN+i,j − σkj), (2.84)

where t = [(p − τ)/2]. Based on R̃
′
i(a

′) = (e′i(a
′), ṽ′i(a

′))T , we define the empirical

likelihood function for a′ as

L4(a
′) = sup{

N∏
i=1

(Npi) :
N∑
i=1

pi = 1,
N∑
i=1

piR̃
′
i(a

′) = 0, pi ≥ 0, i = 1, . . . , N}. (2.85)

Theorem 2.4.5. Suppose that Xi follows the model of Cai and Jiang [12], i.e., Xi ∼

N(0,Σ). Assume C1 ≤ lim infn→∞ min1≤i≤p σii ≤ lim supn→∞ max1≤i≤p σii ≤ C2 for

some constants 0 < C1 ≤ C2 < ∞, and τ = o((
∑

1≤i,j≤p σ
2
ij)

1/2). Then under H0 in

(2.80), −2 logL4(a
′
0) converges in distribution to a chi-square distribution with two

degrees of freedom as n→∞.

Remark 2.4.4. From the proof we can see that the above theorem holds for any

choice of t. Different t can be chosen to improve the power of the proposed test,

based on some prior information. Since τ = o(p1/2) implies τ = o((
∑

1≤i,j≤p σ
2
ij)

1/2),

the proposed test imposes much weaker conditions on τ and p than those in Cai and

Jiang [12].

Power analysis. In the following we study the power analysis of our new tests.

Denote π11 =
∑q

i=1

∑q
i=1 θ

2
ij = E(e21(a)), π22 = 2

∑q
i=1

∑q
i=1 θij = E(v2

1(a)),

ζn1 = (a− a0)
T (a− a0)/

√
π11 = tr((Σ− Σ0)

2)/
√
π11

and

ζn2 = 21Tq (a− a0)/
√
π22 = 21Tp (Σ− Σ0)1p/

√
π22.
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Theorem 2.4.6. In addition to the conditions of Theorem 2.1, if H1 : a 6= a0 holds

with

ζn1 = o(1), (2.86)

then

P{−2 logL1(a0) > ξ1−α} = P{χ2
2,ν > ξ1−α}+ o(1) (2.87)

to as n → ∞, where χ2
2,ν is a noncentral chi-square distribution with two degrees of

freedom and noncentrality parameter ν = N(ζ2
n1 + ζ2

n2),

Remark 2.4.5. From the above power analysis, the new test rejects the null hypothesis

with probability tending to one when
√
nζn1 or

√
n|ζn2| goes to infinity. Note that

the test given in Chen, Zhang and Zhong [14] for the identity hypothesis H0 : Σ = Ip

against H1 : Σ 6= Ip requires nρ1,n →∞ which is equivalent to ρ2,n → 0 where

ρ1,n =
1

p
tr((Σ− Ip)

2),

ρ2,n =
tr(Σ2)

ntr((Σ− Ip)2)
.

See (3.4) and the proof of Theorem 4 in Chen, Zhang and Zhong (2010). When

model (B) holds,
√
π11 = O(tr(Σ2)) (similar to the proof of Lemma ??), therefore the

condition ρ2,n → 0 is exactly nζn1 →∞. Our test requires max(
√
nζn1,

√
n|ζn2|) →∞.

Thus, our test may have a better power or a worse power in different settings.

Remark 2.4.6. For the tests for the banded structure introduced in Theorems 2.4.4

and 2.4.5, we have similar power results.

2.4.3 Simulation study

In this section we investigate the finite sample behavior of the proposed empirical

likelihood test in terms of both size and power, and compare it with the test based

on maximum in Cai and Jiang [12] for testing a banded structure.
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Draw 2, 000 random samples with sample size n = 200 or 500 from the random

variable W1 +(δ/
√
n)0.5W2, where W1 ∼ N(0, (σij)1≤i,j≤p), σij = 0.5|i−j|I(|i− j| < τ),

W2 ∼ N(0, 1p×p) where 1p×p is a p × p matrix with all entries being 1, and W1 is

independent of W2. We are interested in testing the banded structure H0 : σij = 0

for |i− j| ≥ τ . We consider τ = 5 and increase p with a step 5 from 10 till 200. We

also take τ = 20 and start with p = 25 since p > τ is required. We plot the sizes

(δ = 0) and the powers (δ = 0.1, 0.5) against p for the proposed empirical likelihood

tests based on both Theorems 2.4.4 and 2.4.5, and the test based on maximum in

Cai and Jiang [12] in Figures 2.5–2.8. In each figure, the solid line, dashed line and

dotted line represent the proposed empirical likelihood tests based on Theorems 2.4.4

and 2.4.5, and the test based on maximum in Cai and Jiang [12], respectively.

From these figures, we observe that i) panels in the first row of each figure show

that the proposed empirical likelihood tests have a more accurate size than the test

in Cai and Jiang [12], and the size for these three tests becomes accurate when the

sample size increases; ii) panels in the second and third rows of each figure show that

the proposed empirical likelihood tests are much more powerful than the test in Cai

and Jiang [12].

2.4.4 Proofs

Without loss of generality, we assume µ0 = 0 throughout. For simplicity, we use || · ||

to denote the L2 norm of a vector or matrix and write ei(a0) = ei, vi(a0) = vi and

e∗i (a0) = e∗i , v
∗
i (a0) = v∗i . We first show some lemmas.

Lemma 2.4.7. Under the conditions of Theorem 2.4.1, we have

1√
N

N∑
i=1

( ei√
π11

,
vi√
π22

)T d−→ N(0, I2) (2.88)

and

1√
N

N∑
i=1

( e∗i√
π11

,
v∗i√
π22

)T d−→ N(0, I2), (2.89)
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Figure 2.5: Powers of tests are plotted against p = 10, 15, . . . , 200 with levels 0.05
and 0.1 for n = 200 and τ = 5.
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Figure 2.6: Powers of tests are plotted against p = 10, 15, . . . , 200 with levels 0.05
and 0.1 for n = 500 and τ = 5.
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Figure 2.7: Powers of tests are plotted against p = 25, 30, . . . , 200 with levels 0.05
and 0.1 for n = 200 and τ = 20.
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Figure 2.8: Powers of tests are plotted against p = 25, 30, . . . , 200 with levels 0.05
and 0.1 for n = 500 and τ = 20.
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where I2 is the 2× 2 identity matrix. Further,∑N
i=1 e

2
i

Nπ11

− 1
p−→ 0,

∑N
i=1 e

∗2
i

Nπ11

− 1
p−→ 0, (2.90)∑N

i=1 v
2
i

Nπ22

− 1
p−→ 0,

∑N
i=1 v

∗2
i

Nπ22

− 1
p−→ 0, (2.91)∑N

i=1 eivi
N
√
π11π22

p−→ 0,

∑N
i=1 e

∗
i v
∗
i

N
√
π11π22

p−→ 0, (2.92)

max
1≤i≤N

|ei/
√
π11| = op(N

1/2), max
1≤i≤N

|vi/
√
π22| = op(N

1/2), (2.93)

max
1≤i≤N

|e∗i /
√
π11| = op(N

1/2), max
1≤i≤N

|v∗i /
√
π22| = op(N

1/2). (2.94)

Proof. Since the proofs for the sequence {(e∗i , v∗i )T} are similar to those for {(ei, vi)T},

we only prove the cases of {(ei, vi)T}. It is easily seen that Ee1 = Ev1 = E[e1v1] = 0

and

Ee21 =

q∑
i=1

q∑
i=1

θ2
ij = π11, Ev2

1 = 2

q∑
i=1

q∑
i=1

θij = π22.

Thus, by the Cramer-Wold device, for proving (2.88), it suffices to show that for any

constants c, d,

1√
N

N∑
i=1

(
c
ei√
π11

+ d
vi√
π22

)
d−→ N(0, c2 + d2). (2.95)

Since {cei/
√
π11 + dvi/

√
π22} is an i.i.d random sequence with mean zero and

1

N (2+δ)/2

N∑
i=1

E
∣∣∣c ei√

π11

+ d
vi√
π22

∣∣∣2+δ
= N−δ/2E

∣∣∣c e1√
π11

+ d
v1√
π22

∣∣∣2+δ
≤ 21+δN−δ/2[|c|2+δE|e1/

√
π11|2+δ + |d|2+δE|v1/

√
π22|2+δ]

= 22+δN−δ/2o(N
δ+min{2,δ}

4 ) = o(1), (2.96)
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(2.95) follows from Lyapunov central limit theorem.

Next, we show the first equation in (2.90). Since Ee21 = π11, by von Bahr-Esseen’s

inequality [98], we have for any 0 < δ ≤ 2,

E|
N∑
i=1

(e2i − π11)|(2+δ)/2 ≤ 2NE|e21 − π11|(2+δ)/2 = O(NE|e1|2+δ) (2.97)

and when δ > 2, it follows from Dharmadhikari, Fabian and Jogdeo [27] that

E|
N∑
i=1

(e2i − π11)|(2+δ)/2 ≤ CN (2+δ)/4E|e21 − π11|(2+δ)/2 = O(N (2+δ)/4E|e1|2+δ). (2.98)

By (2.97), (2.98) and (2.79) we get

E|
N∑
i=1

(e2i − π11)|(2+δ)/2 = O(N (2+max{2,δ})/4E|e1|2+δ) = o((Nπ11)
(2+δ)/2). (2.99)

It follows from (2.99) and Chebyshev’s inequality that for any ε > 0,

P
(∣∣∣ N∑

i=1

e2i
Nπ11

− 1
∣∣∣ > ε

)
≤ (Nπ11ε)

−(2+δ)/2E|
N∑
i=1

(e2i − π11)|(2+δ)/2 = o(1), (2.100)

which implies the first equation of (2.90).

Since E(eivi) = 0, similar to (2.97) and (2.98), we have

E|
N∑
i=1

eivi|(2+δ)/2 = O(N (2+max{2,δ})/4E|e1v1|(2+δ)/2)

= O
(
N (2+max{2,δ})/4(E|e1|2+δ)1/2(E|e1|2+δ)1/2

)
,

which implies the first equation of (2.92) by using the Chebyshev’s inequality. Equa-

tion (2.93) follows from (2.96) by letting c = 0, d = 1 or c = 1, d = 0.

Lemma 2.4.8. Under conditions of Theorem 2.4.3, we have

Ee41/(Ee
2
1)

2 = O(1) and Ev4
1/(Ev

2
1)

2 = O(1).

Proof. Without loss of generality we assume µ = 0. Since σij = E(X1iX1j), we have

Ee41 = E
{ p∑

i=1

p∑
j=1

(X1iX1j − σij)(XN+1,iXN+1,j − σij)
}4

≤ 256E
{ p∑

i=1

p∑
j=1

X1iX1jXN+1,iXN+1,j

}4

= 256
∑

1≤i1,...,i8≤p

{
E(

8∏
l=1

X1il)
}2

=: 256
∑

1≤i1,...,i8≤p

[T (i1, . . . , i8)]
2.
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Write Γ = (γij)p×m and Ui = Z1i for i = 1, . . . ,m. Then var(X1) = Σ = (σij)p×p =

ΓΓT and it follows from (B’) that

X1i =
m∑
j=1

γijUj, i = 1, . . . , p,

and

T (i1, . . . , i8) = E

(
8∏
l=1

(
m∑
j=1

γiljUj

))
.

By (B’), we know that

E(
8∏
i=1

Uai
) 6= 0

implies each value of ai appears at least twice in the sequence a1, . . . , a8. Denote

Bl = {(a1, . . . , al) : 1 ≤ a1, . . . , al ≤ m},

and let Sk be the set of k-permutations. Then

T (i1, . . . , i8)

=
∑

(a,b,c,d)∈B4

∑
(k1,...,k8)=σ(i1,...,i8),

σ∈S8

γk1aγk2aγk3bγk4bγk5cγk6cγk7dγk8dE(U2
aU

2
bU

2
cU

2
d )

+
∑

(a,b,c)∈B3,
a 6=b

∑
(k1,...,k8)=σ(i1,...,i8),

σ∈S8

γk1aγk2aγk3aγk4bγk5bγk6bγk7cγk8cE(U3
aU

3
bU

2
c )

= T1(i1, . . . , i8) + T2(i1, . . . , i8).

In the following we denote Λ = ΓTΓ = (λij)m×m and let L be the uniform bound

of E(U8
1 ). Note that the summation

∑
(k1,...,k8)=σ(i1,...,i8), σ∈S8

consists of at most 8!

terms, and for each choice of {k1, . . . , k8} (for example, k1 = i1, . . . , k8 = i8), we get

the same value of

∑
1≤i1,...,i8≤p

 ∑
(a,b,c,d)∈B4

γk1aγk2aγk3bγk4bγk5cγk6cγk7dγk8dE(U2
aU

2
bU

2
cU

2
d )

2

.
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Hence ∑
1≤i1,...,i8≤p

T 2
1 (i1, . . . , i8)

≤ (8!)2
∑

1≤i1,...,i8≤p

∑
(a,b,c,d)∈B4

∑
(a′,b′,c′,d′)∈B4

γi1aγi1a′γi2aγi2a′ . . . γi7dγi7d′γi8dγi8d′

×E(U2
aU

2
bU

2
cU

2
d )E(U2

a′U
2
b′U

2
c′U

2
d′)

= (8!)2
∑

(a,b,c,d)∈B4

∑
(a′,b′,c′,d′)∈B4

(λaa′λbb′λcc′λdd′)
2E(U2

aU
2
bU

2
cU

2
d )E(U2

a′U
2
b′U

2
c′U

2
d′)

≤ (8!)2L2
∑

(a,b,c,d)∈B4

∑
(a′,b′,c′,d′)∈B4

(λaa′λbb′λcc′λdd′)
2

= O(1)
( ∑

1≤a,a′≤m

λ2
aa′

)4

= O((tr(Λ2))4) = O((tr(Σ2))4). (2.101)

Similarly, ∑
1≤i1,...,i8≤p

T 2
2 (i1, . . . , i8)

≤ O(1)
∑

1≤i1,...,i8≤p

∑
(a,b,c)∈B3

∑
(a′,b′,c′)∈B3

γi1aγi1a′γi2aγi2a′γi3aγi3a′ . . . γi8cγi8c′

= O(1)
∑

(a,b,c)∈B3

∑
(a′,b′,c′)∈B3

λ3
aa′λ

3
bb′λ

2
cc′

= O
(( ∑

1≤c,c′≤m

λ2
cc′

)( ∑
1≤a,a′,b,b′≤m

|λaa′λbb′|3
))

= O(tr(Λ2))O
(( ∑

1≤a,a′,b,b′≤m

λ2
aa′λ

2
bb′(λ

2
aa′ + λ2

bb′)
))

= O(tr(Λ2))O
(( ∑

1≤a,a′≤m

λ4
aa′

)( ∑
1≤b,b′≤m

λ2
bb′

))
= O(tr(Λ2)(tr(Λ2))3) = O((tr(Σ2))4). (2.102)

Thus by (2.101) and (2.102),

Ee41 ≤ 256
∑

1≤i1,...,i8≤p

T 2(i1, . . . , i8) = O((tr(Σ2))4). (2.103)

On the other hand, let Vi = ZN+1,i for i = 1, . . . ,m and then

Ee21 = E

(
m∑
a=1

m∑
b=1

m∑
c=1

m∑
d=1

p∑
i=1

p∑
j=1

γiaγjbγicγjd(UaUb − δab)(VcVd − δcd)

)2
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Denote C = min{E(U2
1 − 1)2, 1} > 0. Note that if c 6= a or d 6= b,

E((UaUb − δab)(UcUd − δcd)) = E((VaVb − δab)(VcVd − δcd)) = 0.

Thus,

Ee21 = E

 m∑
a,b,c,d=1

( ∑
1≤i,j≤p

γiaγjbγicγjd

)2

(UaUb − δab)
2(VcVd − δcd)

2


≥

m∑
a,b,c,d=1

( ∑
1≤i,j≤p

γiaγjbγicγjd

)2

C2

= C2

p∑
i1=1

p∑
j1=1

p∑
i2=1

p∑
j2=1

(σi1i2σj1j2)
2

= C2(tr(Σ2))2. (2.104)

Therefore,

Ee41/(Ee
2
1)

2 = O(1).

Next, we show that Ev4
1 = O((Ev2

1)
2). It is easy to verify that

Ev4
1 = E

( p∑
i=1

p∑
j=1

(X1iX1j +XN+1,iXN+1,j − 2σij)
)4

≤ 16E

(
p∑
i=1

p∑
j=1

(X1iX1j − σij)

)4

≤ 256E

(
p∑
i=1

p∑
j=1

X1iX1j

)4

≤ 256
∑

1≤i1,...,i8≤p

T (i1, . . . , i8).
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Similar to (2.101), we can show that

∑
1≤i1,...,i8≤p

T1(i1, . . . , i8)

≤ 8!
∑

1≤i1,...,i8≤p

∑
(a,b,c,d)∈B4

γi1aγi2a . . . γi7dγi8dE(U2
aU

2
bU

2
cU

2
d )

= 8!
∑

(a,b,c,d)∈B4

(
p∑
i=1

λia

)2( p∑
i=1

λib

)2( p∑
i=1

λic

)2( p∑
i=1

λid

)2

E(U2
aU

2
bU

2
cU

2
d )

≤ (8!)L

 m∑
a=1

(
p∑
i=1

λia

)2
4

= O(1)
( ∑

1≤i,j≤p

σij

)4

For T2(i1, . . . , i8), we have

∑
1≤i1,...,i8≤p

T2(i1, . . . , i8)

= O(1)
∑

(a,b,c)∈B3,
a 6=b

(

p∑
i=1

γia)
3(

p∑
j=1

γjb)
3(

p∑
k=1

γkc)
2

≤ O(1)
[ m∑
a=1

m∑
b=1

(

p∑
i=1

γia)
2(

p∑
j=1

γjb)
2
(
(

p∑
i=1

γia)
2 + (

p∑
j=1

γjb)
2
)]( m∑

c=1

(

p∑
k=1

γkc)
2
)

= O
[( m∑

a=1

(

p∑
i=1

γia)
2
)4]

= O(1)
( ∑

1≤i,j≤p

σij

)4

.

Therefore,

Ev4
1 = O

(( ∑
1≤i,j≤p

σij

)4
)
. (2.105)

On the other hand, similar to (2.104), we have

Ev2
1 ≥

∑
1≤a,b≤m

( p∑
i=1

p∑
j=1

γiaγjb

)2

E(UaUb − δab)
2

≥ C
( m∑
a=1

p∑
i=1

p∑
j=1

γiaγja

)2

= C
( p∑
i=1

p∑
j=1

σij

)2

. (2.106)
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Thus, by the condition
∑

1≤i,j≤p σij > 0, (2.105) and (2.106), we have

Ev4
1 = O((Ev2

1)
2).

This completes the proof of Lemma 4.3.

Lemma 2.4.9. Under the assumptions of Theorem 2.4.4, we have

Ee′41 /(Ee
′2
1 )2 = O(1) and Ev′41 /(Ev

′2
1 )2 = O(1), (2.107)

where e′1 = e′1(a0) and v′1 = v′1(a0) as defined in (2.81) and (2.82).

Proof. By Isserlis’ theorem, we have

Ee′41 = E
{ p−τ∑

i=1

p∑
j=i+τ

X1iX1jX(N+1)iX(N+1)j

}4

=
∑

1≤i1,...,i8≤p

{
E(

8∏
l=1

X1il)
}2

=
1

8 ∗ 6 ∗ 4 ∗ 2

∑
1≤i1,...,i8≤p

∑
(k1,...,k8)=σ(i1,...,i8),

σ∈S8

(σk1k2σk3k4σk5k6σk7k8)
2

= 7 ∗ 5 ∗ 3
∑

1≤k1,...,k8≤p

σ2
k1k2

σ2
k3k4

σ2
k5k6

σ2
k7k8

= O((tr(Σ2))4).

On the other hand, by Isserlis’ theorem again, we have

Ee′21 =

p−τ∑
i1=1

p∑
j1=i1+τ

. . .

p∑
i4=1

p∑
j4=i4+τ

{
E(

4∏
l=1

X1ilX1jl)

}2

=

p−τ∑
i1=1

p∑
j1=i1+τ

p−τ∑
i2=1

p∑
j2=i2+τ

(σi1i2σj1j2 + σi1j2σi2j1 + σi1j1σi2j2)
2

=

p−τ∑
i1=1

p∑
j1=i1+τ

p−τ∑
i2=1

p∑
j2=i2+τ

(σi1i2σj1j2)
2

=
1

4

p∑
i1=1

∑
j1:|j1−i1|≥τ

p∑
i2=1

∑
j2:|j2−i2|≥τ

(σi1i2σj1j2)
2

=
1

4

∑
i1,i2:|i1−i2|≤τ

σ2
i1i2

∑
j1,j2:|j1−i1|≥τ,|j2−i2|≥τ

σ2
j1j2

 .
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Here, note that when |i1 − i2| ≤ τ ,

{(j1, j2) : |j1 − j2| ≤ τ} ⊂ {(j1, j2) : |j1 − i1| ≥ τ, |j2 − i2| ≥ τ}

∪{(j1, j2) : |j1 − i1| ≤ 3τ, |j2 − i2| ≤ 3τ}.

Thus

Ee′21 ≥ 1

4

∑
i1,i2:|i1−i2|≤τ

σ2
i1i2

 ∑
j1,j2:|j1−j2|≤τ

σ2
j1j2

−
∑

j1,j2:|j1−i1|≤3τ,|j2−i2|≤3τ

σ2
j1j2


≥ 1

4

p∑
i1,i2=1

(
σ2
i1i2

(
p∑

j1,j2=1

σ2
j1j2

− 36τ 2C2
2

))

=
1

4
tr(Σ2)(tr(Σ2)− 36τ 2C2

2). (2.108)

Since τ = o((
∑

1≤i,j≤p σ
2
ij)

1/2), we have (Ee′21 )−1 = O((tr(Σ2))−2), which implies that

Ee′41 /(Ee
′2
1 )2 = O(1), i.e., the first equality in (2.107) holds.

Next we prove the second half of (2.107). Note that

Ev′
4
1 = E

( p∑
i=1

p∑
j=i+τ

(X1iX1j +XN+1,iXN+1,j)
)4

≤ 16E

 p∑
i=1

p∑
j=1

X1iX1j −
p∑
i=1

∑
|j−i|≤τ

X1iX1j

4

≤ 256E

(
p∑
i=1

p∑
j=1

X1iX1j

)4

+ 256E

 p∑
i=1

∑
|j−i|≤τ

X1iX1j

4

=: 256(T ′1 + T ′2). (2.109)

By (2.105), we have

T ′1 = O

( p∑
i1=1

p∑
i2=1

σi1i2

)4
 . (2.110)
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On the other hand, it follows from Isserlis’ theorem that

T ′2

=
∑

1≤i1,i2,i3,i4≤p

∑
|jl−il|≤τ,l=1,...,4

E

(
4∏
l=1

X1ilX1jl

)

=
1

8 ∗ 6 ∗ 4 ∗ 2

∑
1≤i1,i2,i3,i4≤p

∑
|jl−il|≤τ,l=1,...,4

∑
(p1,q1,...,p4,q4)=σ(i1,j1,...,i4,j4),

σ∈S8, |pl−ql|≤τ,l=1,...,4

σp1q1σp2q2σp3q3σp4q4

(2.111)

For a given permutation {p1, q1, . . . , p4, q4} of {i1, j1, . . . , i4, j4}, the number of com-

mon elements in the two sets {|p1− q1|, . . . , |p4− q4|} and {|i1− j1|, . . . , |i4− j4|} can

be four, two, one and zero. Next we analyze each case.

(i) When there are four common elements, we have

∑
1≤i1,i2,i3,i4≤p

∑
|jl−il|≤τ,l=1,2,3,4

σp1q1σp2q2σp3q3σp4q4 =

∑
1≤i≤p

∑
|i−j|≤τ

σij

4

=

(
p∑
i=1

p∑
j=1

σij

)4

.

(ii) When there are two common elements, without loss of generality, we assume

|p1 − q1| = |i1 − j1|, |p2 − q2| = |i2 − j2|, p3 = i3, q3 = j4, p4 = i4, q4 = j3.

Other possibilities can be shown in the same way. Use the fact that |σj1j2 | ≤
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√
σj1j1σj2j2 ≤ C2 for all 1 ≤ j1, j2 ≤ p, we have

|
∑

1≤i1,i2,i3,i4≤p

∑
|jl−il|≤τ,l=1,2,3,4

σp1q1σp2q2σp3q3σp4q4|

=

(
p∑
i=1

p∑
j=1

σij

)2

|
∑

1≤i3,i4≤p

∑
|i3−j3|≤τ,|i4−j4|≤τ

σp3,q3σp4,q4|

=

(
p∑
i=1

p∑
j=1

σij

)2

|
∑

1≤i3,i4≤p

∑
|i3−j3|≤τ,|i4−j4|≤τ,|i3−j4|≤τ,|i4−j3|≤τ

σi3,j4σi4,j3|

≤

(
p∑
i=1

p∑
j=1

σij

)2 p∑
i3=1

p∑
j4=1

|σi3,j4|
∑

|i4−i3|≤4τ,|j3−i3|≤4τ

|σi4,j3|

≤

(
p∑
i=1

p∑
j=1

σij

)2 p∑
i3=1

p∑
j4=1

|σi3,j4|(8τ)2C2

= o

(
(

p∑
i=1

p∑
j=1

σij)
4

)
.

(iii) When there is one common element, using similar arguments as above, we can

show that

∑
1≤i1,i2,i3,i4≤p

∑
|jl−il|≤τ,l=1,2,3,4

σp1q1σp2q2σp3q3σp4q4 = O

(
(

p∑
i=1

p∑
j=1

σij)(

p∑
i=1

p∑
j=1

|σij|)τ 4

)

= o

(
(

p∑
i=1

p∑
j=1

σij)
4

)
.

(iv) When there is no common element, similarly we can show that

∑
1≤i1,i2,i3,i4≤p

∑
|jl−il|≤τ,l=1,2,3,4

σp1q1σp2q2σp3q3σp4q4 = O

(
(τ 2

p∑
i=1

p∑
j=1

|σij|)2

)

= o

(
(

p∑
i=1

p∑
j=1

σij)
4

)
.

Hence, it follows from the above results that

T ′2 = O

( p∑
i=1

p∑
j=1

σij

)4
 . (2.112)
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On the other hand, we have

Ev′21

= E
( p−τ∑
i1=1

p∑
j1=i1+τ

p−τ∑
i2=1

p∑
j2=i2+τ

(X1iX1j +XN+1,iXN+1,j)
)2

= 2
p−τ∑
i1=1

p∑
j1=i1+τ

p−τ∑
i2=1

p∑
j2=i2+τ

E (X1i1X1j1X1i2X1j2)

= 2
p−τ∑
i1=1

p∑
j1=i1+τ

p−τ∑
i2=1

p∑
j2=i2+τ

(σi1i2σj1j2 + σi1j1σi2j2 + σi1j2σi2j1)

=
1
2

p∑
i1=1

∑
|j1−i1|≥τ

p∑
i2=1

∑
|j2−i2|≥τ

σi1i2σj1j2

=
1
2

p∑
i1=1

p∑
i2=1

σi1i2

 p∑
j1=1

p∑
j2=1

−
p∑

j2=1

∑
|j1−i1|<τ

−
p∑

j1=1

∑
|j2−i2|<τ

−
∑

|j1−i1|≤τ

∑
|j2−i2|<τ

σj1j2


=

1
2

p∑
i1=1

p∑
i2=1

σi1i2

 p∑
j1=1

p∑
j2=1

−
∑

|j1−j2|≤τ

∑
|j1−i1|<τ

−
∑

|j1−j2|<τ

∑
|j2−i2|<τ

−
∑

|j1−i1|≤τ

∑
|j2−i2|<τ

σj1j2


≥ 1

2

(
p∑

i1=1

p∑
i2=1

σi1i2I(σi1i2 ≥ 0)

) p∑
j1=1

p∑
j2=1

σj1j2 − 20τ2C2


+

1
2

(
p∑

i1=1

p∑
i2=1

σi1i2I(σi1i2 < 0)

) p∑
j1=1

p∑
j2=1

σj1j2 + 20τ2C2


=

1
2

(
p∑

i1=1

p∑
i2=1

σi1i2

)2

− 20τ2C2

p∑
i1=1

p∑
i2=1

|σi1i2 |.

Since τ = o(min{(
∑

1≤i,j≤p σij)/(
∑

1≤i,j≤p |σij|)1/2}), it follows that

(Ev′
2
1)
−1 = O

( p∑
i1=1

p∑
i2=1

σi1i2

)−2
 . (2.113)

Therefore, the second equality in (2.107) follows from (2.109)–(2.113).

Lemma 2.4.10. Under the assumptions of Theorem 2.4.5, we have

Ee′41 /(Ee
′2
1 )2 = O(1) and Eṽ′41 /(Eṽ

′2
1 )2 = O(1), (2.114)

where e′1 = e′1(a0) and ṽ′1 = ṽ′1(a0) are defined in (2.81) and (2.84).

84



www.manaraa.com

Proof. The first equality follows from the proof of Lemma 2.4.9. To show the second

half of (2.107), let g1 =
∑t

i=1X1i

∑p
j=t+τ X1j and g2 =

∑t
i=1XN+1,i

∑p
j=t+τ XN+1,j.

Then we have that ṽ′1 = g1 + g2, E(ṽ′41 ) ≤ 16E(g4
1) and E(ṽ′21 ) = 2E(g2

1).

Note that g1 is the product of two Gaussian random variables from a multivariate

Gaussian vector with mean zero. Hence we can write g1 = A(A + B) where A,

B are independent Gaussian random variables with mean zero, variance a2 and b2

respectively. It follows that

Eg4
1 ≤ 16(E(A8) + E(A4B4))

= 16(105a8 + 9a4b4)

≤ 200(9a8 + a4b4)

≤ 200(3a4 + a2b2)2 = 200(Eg2
1)

2 = 100(Eṽ′21 )2.

This completes the proof of the lemma.

Proof of Theorem 2.4.1. It follows from Lemma 2.4.7 and the standard arguments of

empirical likelihood method.

Proof of Corollary 2.4.2. It follows from the argument in the proof of Corollary 2.2.2.

Proof of Theorem 2.4.3. It follows from Lemma 2.4.8 that (2.79) in Theorem 2.4.1

holds with δ = 2. Hence Theorem 2.4.3 follows from Theorem 2.4.1.

Proof of Theorem 2.4.4. It follows from Lemma 2.4.9 that (2.79) holds for random

sequence {e′i} and {v′i} with δ = 2. Hence Theorem 2.4.4 follows from the same

arguments as in the proof of Theorem 2.4.1.

Proof of Theorem 2.4.5. It follows from Lemma 2.4.10 that (2.79) holds for random

sequence {e′i} and {ṽ′i} with δ = 2. Hence Theorem 2.4.5 follows from the same

arguments as in the proof of Theorem 2.4.1.
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Proof of Theorem 2.4.6. Note that under the alternative hypothesis H1, EY1 = a and

for 1 ≤ i ≤ N ,

ei(a0) = ei(a) + (a− a0)
T (a− a0) + (a− a0)

T (Yi + YN+i − 2a)

= ei(a) + (a− a0)
T (a− a0) + (a− a0)

T (Yi + YN+i − 2a)

vi(a0) = vi(a) + 21Tq (a− a0) = vi(a) + 21Tq (a− a0),

where q = p2. As a result, we have

(ei(a0)√
π11

,
vi(a0)√
π22

)T
=
(ei(a)
√
π11

,
vi(a)
√
π22

)T
+
(
ζn1, ζn2

)T
+
(
ηi(a), 0

)T
,

where ηi(a) = (a− a0)
T (Yi + YN+i − 2a)/

√
π11. Since

E[
N∑
i=1

ηi(a)]2 = 4N(a− a0)
TΘ(a− a0)/π11 = 4N(a− a0)

TΘ(a− a0)/tr(Θ
2)

= O[N(a− a0)
T (a− a0)/

√
π11],

it follows from condition (2.86) that

E[
N∑
i=1

ηi(a)]2 = o(N).

Similar to the argument in proving Theorem 3 of Peng, Qi and Wang [78], we see

that to prove Theorem 2.4.6, it suffices to show

1√
N

N∑
i=1

(ei(a)
√
π11

,
vi(a)
√
π22

)T d−→ N(0, I2). (2.115)

which follows directly from Lemma 2.4.7. This completes the proof of Theorem

2.4.6.
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CHAPTER III

JACKKNIFE EMPIRICAL LIKELIHOOD METHODS IN

RISK MANAGEMENT

Risk-distortion measures, Spearman’s rho and parametric copulas are important quan-

tities in the research of risk management, and the interval estimation for those quan-

tities is known to be challenging. In this chapter, we construct interval estimation for

important quantities in these fields: using the jackknife empirical likelihood methods.

The content in this chapter is mainly based on the following papers.

1. Peng, L., Qi, Y., Wang, R. and Yang, J. (2012). Jackknife empirical likelihood

methods for risk measures and related quantities. Insurance: Mathematics and

Economics, to appear.

2. Wang, R., Peng, L. and Yang, J. (2012). Jackknife empirical likelihood for

parametric copulas. Scandinavian Actuarial Journal, to appear.

3. Wang, R. and Peng, L. (2011). Jackknife empirical likelihood intervals for

Spearman’s rho. North American Actuarial Journal, 15(4), 475-486.

3.1 Introduction

Statistical inference plays an important role in the modern research of actuarial sci-

ence and risk management. In this chapter, we consider new methods of interval

estimation for three different quantities of importance in risk management. We re-

fer to Jones and Zitikis [51], McNeil, Frey and Embrechts [65] and Genest, Ghoudi

and Rivest [42] for summary of the statistical inference on risk-distortion measures,

Spearman’s rho and parametric copulas, respectively. See also the introduction in
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each of the following sections for more references.

Quantifying risk is always an important topic in actuarial science and risk man-

agement. For a given non-negative function ψ, the risk-distortion measure R(F ) =∫ 1

0
F−(t)ψ(t)dt is used to measure the corresponding risk with a loss distribution F .

It is known that the asymptotical variance of the estimation of R(F ) is very compli-

cated; see Jones and Zitikis [51] for more details about R(F ). Under some regularity

conditions (same as in [51]), we find an interval estimation for R(F ) in Section 3.2.

The functional R(F ) is also known as the L-statistics (see Chapter 2 of Shao and Tu

[93]). The results also contribute to the study of the asymptotical behavior of the

L-statistics.

For dependent risks X and Y with marginal distributions F and G respectively,

Spearman’s rho ρs = 12E[(F (X)− 1/2)(G(Y )− 1/2)] is one of the most commonly-

used non-parametric measures of dependence between risks X and Y . As a measure

of dependence, ρs is determined by the copula of X and Y . Although ρs can be

estimated non-parametrically by a natural estimator ρ̂s, the asymptotical variance

of ρ̂s depends on the underlining dependence structure of X and Y and is hard to

estimate. Using the jackknife empirical likelihood method, we construct an interval

estimation for R(F ) without calculating the asymptotic variance in Section 3.3.

As introduced in Chapter I, the analysis of multivariate dependence structures is

often dealt with by using copulas. To fit a parametric copula to multivariate data,

a popular way is to employ the so-called pseudo maximum likelihood estimation

proposed in Genest, Ghoudi and Rivest [42]. However, the asymptotical variance of

the above estimator is unavailable except for a few classes of copulas. Under some

regularity conditions, we gave a region estimation for the parameter of the copula

family in Section 3.4 based on the score equations.

In each section, there are separate subsections of an introduction, the main results,

the simulation and proofs.
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3.2 Interval Estimation for Risk-distortion Measures

Quantifying risks is of importance in insurance. In this section, we employ the jack-

knife empirical likelihood method to construct confidence intervals for some risk mea-

sures and related quantities studied by Jones and Zitikis [51]. A simulation study

shows the advantages of the new method over the normal approximation method and

the naive bootstrap method.

3.2.1 Introduction

In life insurance and finance, quantifying risks is a very important task for pricing

an insurance product or managing a financial portfolio. Generally speaking, a risk

measure is constructed to be a mapping from a set of risks to the set of real numbers.

Some well-known risk measures include coherent risk measures (Yaari [111], Artzner

[4]), distortion risk measures, Wang’s premium principle and proportional hazards

transform risk measures; see Wang, Young and Panjer [104]; Wang [100, 101, 102];

Wirch and Hardy [110] and Necir and Meraghni [68] for references.

For a risk variable X with distribution function F , Jones and Zitikis [51] defined

a large class of risk measures associated with X as

R(F ) =

∫ 1

0

F−(t)ψ(t)dt, (3.1)

where F− denotes the generalized inverse function of F , and ψ is a nonnegative

function chosen for showing the objective opinion about the risk loading. Different

choices of ψ result in different risk measures. For example, Tail Value-at-Risk has

ψ(t) = I(t > α)/(1 − α) with 0 < α < 1, the proportional hazards transform risk

measure has ψ(t) = r(1 − t)r−1 and Wang’s premium principle has ψ(t) = g′(1 − t),

where g is an increasing convex function with derivatives over [0, 1]; see Jones and

Zitikis [51] for details. Other choices of the function ψ can be found in Jones and

Zitikis [53]. Jones and Zitikis [51] also introduced a related quantity to illustrate the
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right-tail, left-tail and two-sided deviations, which is defined as

r(F ) =
R(F )

E(X)
. (3.2)

Note that the general definition of distortion measures as mentioned in Wang and

Young [103] and Wirth and Hardy [110] includes the two widely used risk measures:

Value-at-Risk (VaR) and Tail Value-at-Risk (T-VaR). However the class defined by

(3.1) excludes the VaR. In this section, we focus on the statistical inference of the

risk measure and its related quantity defined in (3.1) and (3.2), respectively.

Statistical inference for R(F ) and r(F ) plays an important role in the applica-

tions of risk measures. Jones and Zitikis [51] proposed nonparametric estimation by

replacing F− and E(X) by the sample quantile function and sample mean respectively,

and derived the asymptotic normality. Therefore, confidence intervals for R(F ) and

r(F ) can be constructed via estimating the asymptotic variance. For comparing two

risk measures, we refer to Jones and Zitikis [52]. Jones and Zitikis [53] investigated

the nonparametric estimation of the parameter associated with distortion-based risk

measures.

Because of the complexity of the asymptotic variance of R(F ) and r(F ), con-

structing non-parametric confidence intervals via estimating the asymptotic variance

is usually inaccurate. In order to construct confidence intervals for R(F ) and r(F )

without estimating the asymptotic variance, we investigate the possibility of applying

an empirical likelihood method in this section so as to improve the inference.

The empirical likelihood method, as introduced in Chapter I, is a nonparametric

likelihood approach for statistical inference, which has been shown to be powerful

in interval estimation and hypothesis testing. Since the risk measure R(F ) and its

related quantity r(F ) are non-linear functionals, we propose to employ the jackknife

empirical likelihood method to obtain interval estimation for these two quantities.

Note that for some special risk measures such as VaR and T-VaR one can simply

linearized them so that the profile empirical likelihood method can be employed; see
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Baysal and Staum [7] for the study of VaR and T-VaR.

The whole section is organized as follows. In Section 3.2.2, the methodologies and

main results are presented. A simulation study is given in Section 3.2.3. All proofs

are put in Section 3.2.4.

3.2.2 Methodology

Throughout we assume that the observationsX1, . . . , Xn are independent non-negative

random variables with continuous distribution function F (x). Put Ψ(t) =
∫ t

0
ψ(s)ds.

When R(F ) <∞, we have t{Ψ(1)−Ψ(F (t))} → 0 as t→∞. Thus the risk measure

defined in (3.1) can be written as

R = R(F ) =

∫ ∞

0

{Ψ(1)−Ψ(F (t))}dt.

Define the empirical distribution function as Fn(x) = 1
n

∑n
j=1 I(Xj ≤ x). Then Jones

and Zitikis [51] proposed to estimate R(F ) and r(F ) by

R̂n =

∫ ∞

0

(Ψ(1)−Ψ(Fn(t)))dt, and r̂n =
n
∫∞

0
(Ψ(1)−Ψ(Fn(t)))dt∑n

j=1Xj

,

respectively, and showed that

√
n{R̂n −R} d→ N(0, σ2

1) and
√
n{r̂n − r(F )} d→ N(0, σ2

2) (3.3)

under some regularity conditions, where

σ2
1 = QF (Ψ,Ψ), σ2

2 =
1

µ2

(
QF (Ψ,Ψ)− 2r(F )QF (Ψ, 1) + (r(F ))2QF (1, 1)

)
(3.4)

and

QF (a, b) =

∫ ∞

0

∫ ∞

0

(F (x ∧ y)− F (x)F (y))a(F (x))b(F (y))dxdy,

where a(·), b(·) are two functions on [0, 1]. Based on (3.3), confidence intervals for

R(F ) and r(F ) can be obtained via estimating σ2
1 and σ2

2.

An alternative way to construct confidence intervals is to employ the empirical

likelihood method. Since the risk measure R is non-linear, a common technique is to
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linearize the functional by introducing some link variables before applying the profile

empirical likelihood method; see the study for ROC curve (Claeskens, Jing, Peng

and Zhou [21]) and copulas (Chen, Peng and Zhao [19]). Unfortunately it remains

unknown on how to linearize R by introducing some link variables. Here we propose

to apply the jackknife empirical likelihood method developed by Jing, Yuan and Zhou

[47]. This procedure is easy to implement and is described as follows.

Define Fn,i = 1
n−1

∑n
j=1,j 6=i I(Xj ≤ x) and R̂n,i =

∫∞
0

(Ψ(1) − Ψ(Fn,i(t)))dt for

i = 1, . . . , n. Then the jackknife sample is defined as

Yi = nR̂n − (n− 1)R̂n,i, i = 1, . . . , n.

Now we apply the empirical likelihood method to the above jackknife sample. That

is, define the jackknife empirical likelihood function for θ = R(F ) as

L1(θ) = sup{
n∏
i=1

(npi) : pi ≥ 0, for i = 1, . . . , n;
n∑
i=1

pi = 1;
n∑
i=1

piYi = θ}.

By Lagrange multiplier technique, we have pi = n−1{1+λ(Yi−θ)}−1 and−2 logL1(θ) =

2
∑n

i=1 log{1 + λ(Yi − θ)}, where λ = λ(θ) satisfies

n∑
i=1

Yi − θ

1 + λ(Yi − θ)
= 0. (3.5)

The following theorem shows that Wilks’ Theorem holds for the proposed jackknife

empirical likelihood method.

Theorem 3.2.1. Assume that |ψ(x)| ≤ cxα−1(1 − x)β−1, ψ′(x) exists and |ψ′(x)| ≤

cxα−2(1 − x)β−2 for all 0 < x < 1 and some constants α > 1/2, β > 1/2 and

c > 0. Further assume E(|Xi|γ) < ∞ for some γ such that γ > 1/(α − 1/2) and

γ > 1/(β − 1/2). Then we have

−2 logL1(R0)
d→ χ2

1 as n→∞,

where R0 denotes the true value of R and χ2
1 denotes a chi-square distribution with

one degree of freedom.
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Remark 3.2.1. Some well-known risk measures, such as proportional hazards trans-

form risk measure, Wang’s right-tail deviation and Wang’s left-tail deviation satisfy

the assumptions of Theorem 3.2.1; see Jones and Zitikis [51]. Although the definition

of (3.1) includes the widely employed risk measure T-VaR, the assumptions in the

Theorem 3.2.1 exclude it.

Remark 3.2.2. Note that when Xi is a real-valued random variable, tΨ(F (t)) → 0 as

t→ −∞ and t{Ψ(1)−Ψ(F (t))} → 0 as t→∞, one can write

R = R(F ) =

∫ ∞

0

{Ψ(1)−Ψ(F (t))} dt+

∫ 0

−∞
Ψ(F (t)) dt.

Hence a similar jackknife empirical likelihood method can be applied.

Based on the above theorem, a confidence interval for R0 with level b can be

obtained as

IRb = {R : −2 logL1(R) ≤ χ2
1,b},

where χ2
1,b is the b-th quantile of χ2

1.

Next we consider the related quantity r(F ) = R(F )/µ where µ = E(X1). Alter-

natively, we consider the quantity R− θµ with θ = r(F ). Then one can estimate this

quantity by

R̂n − θn−1

n∑
i=1

Xi = R̂n − θ

∫ ∞

0

x dFn(x) = R̂n − θ

∫ ∞

0

(1− Fn(x)) dx.

As before, we define the jackknife sample as

n

(
R̂n − θ

∫ ∞

0

x dFn(x)

)
− (n− 1)

(
R̂n,i − θ

∫ ∞

0

x dFn,i(x)

)
= Yi − θXi

for i = 1, . . . , n, where Y ′
i s are defined as above. So the jackknife empirical likelihood

function for θ = r(F ) is defined as

L2(θ) = sup{
n∏
i=1

(npi) : pi ≥ 0, for i = 1, . . . , n;
n∑
i=1

pi = 1;
n∑
i=1

pi(Yi − θXi) = 0}.

The following theorem shows that Wilks’ Theorem holds for the proposed jackknife

empirical likelihood method for r(F ).
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Theorem 3.2.2. Assume the conditions in Theorem 3.2.1 hold. Further assume

E(X2
1 ) <∞. Then

−2 logL2(r0)
d→ χ2

1 as n→∞,

where r0 denotes the true value of r(F ).

Based on the above theorem, a confidence interval for r0 with level b can be

obtained as

Irb = {r : −2 logL2(r) ≤ χ2
1,b}.

Remark 3.2.3. The intervals given after Theorems 3.2.1 and are two sided. Con-

structing one-sided intervals may be useful in risk management and similar jackknife

empirical likelihood confidence intervals can be obtained.

3.2.3 Simulation study

In this section we examine the finite sample behavior of the proposed jackknife empir-

ical likelihood method in terms of coverage accuracy and interval length, and compare

it with the normal approximation method and the naive bootstrap method. Interval

estimation for contaminated data is studied by Kaiser and Brazauskas [56]. We focus

on the proportional hazards transform risk measure with ψ(s) = a(1 − s)a−1 and

choose a = 0.55 and 0.85 for simulation. Since the Pareto distribution, log-normal

distribution, Weibull distribution and Gamma distribution are widely used in fitting

the losses data in insurance (see Klugman, Panjer and Willmot [57]), our simulation

study is based on these four distributions.

We draw 5, 000 random samples of sizes n = 300 and 1000 from the following

distributions:

1. Pareto distribution F1(x; θ) = 1− x−θ for x ≥ 1;

2. Log-normal distribution F2(x; θ1, θ2) = Φ((log x− θ1)/θ2) for x > 0, where Φ(x)

denotes the standard normal distribution function;
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3. Weibull distribution F3(x; θ1, θ2) = 1− exp{−(x/θ2)
θ1} for x > 0;

4. Gamma distribution

F4(x; θ1, θ2) =

∫ x

0

θθ12

Γ(θ1)
sθ1−1 exp{−θ2s}ds for x > 0.

For calculating the proposed jackknife empirical likelihood intervals (JELCI) for

both R(F ) and r(F ), we use the R package ’emplik’. For calculating the confidence

intervals for R(F ) based on the normal approximation method (NACI), we use the

variance estimation in Jones and Zitikis [51]. For computing the naive bootstrap con-

fidence intervals for r(F ) (NBCI), we draw 5, 000 bootstrap samples with replacement

from each random sample X1, . . . , Xn. Empirical coverage probabilities are reported

in Tables 3.1 and 3.2 for these three confidence intervals with levels 0.9, 0.95 and

0.99. Tables 3.3 and 3.4 report the average interval lengths for these intervals. From

these tables, we conclude that the proposed jackknife empirical likelihood method

gives more accurate coverage probability than the other two methods especially for

the case of n = 300. On the other hand, the new method has a bigger interval length

than the other methods for most cases.

3.2.4 Proofs

Throughout we put Ui = F (Xi) for i = 1, . . . , n, Gn(t) = n−1
∑n

i=1 I(Ui ≤ t) and

Gn,i = (n−1)−1
∑n

j=1,j 6=i I(Uj ≤ t) for i = 1, . . . , n. Since F is continuous, U1, . . . , Un

are independent and uniformly distributed over (0, 1). Without loss of generality we

assume no ties in U1, . . . , Un, and let Un,1 < · · · < Un,n denote the order statistics of

U1, . . . , Un. We also use C to denote a generic constant which may be different in

different places.

Under the conditions of Theorem 3.2.1, we first list some facts which will be

employed in the proofs. We assume β ≤ α throughout since proofs for the case

of β > α are exactly the same. Therefore we have |ψ(x)| ≤ cxβ−1(1 − x)β−1 and
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Table 3.1: Coverage probabilities for R(F ) are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the normal approx-
imation method (NACI).

(n, a, F ) JELCI NACI JELCI NACI JELCI NACI
level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.6316 0.4408 0.7096 0.4978 0.8348 0.6082
(300, 0.85, F1(; 4)) 0.8618 0.8500 0.9202 0.9020 0.9768 0.9512
(1000, 0.55, F1(; 4)) 0.6160 0.4438 0.7084 0.5032 0.8402 0.6108
(1000, 0.85, F1(; 4)) 0.8702 0.8642 0.9330 0.9240 0.9870 0.9738
(300, 0.55, F2(; 0, 1)) 0.6906 0.5376 0.7692 0.6020 0.8808 0.7012
(300, 0.85, F2(; 0, 1)) 0.8664 0.8560 0.9270 0.9104 0.9802 0.9590
(1000, 0.55, F2(; 0, 1)) 0.7206 0.5870 0.7968 0.6522 0.8972 0.7556
(1000, 0.85, F2(; 0, 1)) 0.8810 0.8698 0.9332 0.9236 0.9828 0.9750
(300, 0.55, F3(; 4, 1)) 0.8998 0.8798 0.9496 0.9344 0.9872 0.9802
(300, 0.85, F3(; 4, 1)) 0.9080 0.9066 0.9556 0.9534 0.9890 0.9884
(1000, 0.55, F3(; 4, 1)) 0.9032 0.8918 0.9530 0.9462 0.9912 0.9876
(1000, 0.85, F3(; 4, 1)) 0.9094 0.9068 0.9558 0.9560 0.9926 0.9932
(300, 0.55, F4(; 4, 1)) 0.8568 0.8024 0.9152 0.8718 0.9774 0.9460
(300, 0.85, F4(; 4, 1)) 0.8934 0.8842 0.9458 0.9402 0.9898 0.9870
(1000, 0.55, F4(; 4, 1)) 0.8728 0.8430 0.9336 0.9060 0.9844 0.9696
(1000, 0.85, F4(; 4, 1)) 0.9010 0.8988 0.9514 0.9490 0.9904 0.9900

Table 3.2: Coverage probabilities for r(F ) are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the naive bootstrap
method (NBCI).

(n, a, F ) JELCI NBCI JELCI NBCI JELCI NBCI
level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.5002 0.3682 0.5802 0.4060 0.6990 0.4858
(300, 0.85, F1(; 4)) 0.7310 0.6782 0.8026 0.7366 0.8980 0.8128
(1000, 0.55, F1(; 4)) 0.5550 0.4342 0.6344 0.4840 0.7610 0.5600
(1000, 0.85, F1(; 4)) 0.7924 0.7536 0.8646 0.8124 0.9482 0.8830
(300, 0.55, F2(; 0, 1)) 0.5432 0.4242 0.6098 0.4744 0.7184 0.5628
(300, 0.85, F2(; 0, 1)) 0.7116 0.6546 0.7770 0.7168 0.8762 0.8084
(1000, 0.55, F2(; 0, 1)) 0.6102 0.5296 0.6850 0.5854 0.7908 0.6698
(1000, 0.85, F2(; 0, 1)) 0.7670 0.7290 0.8384 0.7928 0.9202 0.8726
(300, 0.55, F3(; 4, 1)) 0.8554 0.8380 0.9118 0.8936 0.9736 0.9608
(300, 0.85, F3(; 4, 1)) 0.8922 0.8798 0.9444 0.9320 0.9850 0.9802
(1000, 0.55, F3(; 4, 1)) 0.8646 0.8538 0.9192 0.9130 0.9776 0.9762
(1000, 0.85, F3(; 4, 1)) 0.8850 0.8796 0.9390 0.9330 0.9886 0.9842
(300, 0.55, F4(; 4, 1)) 0.7740 0.7200 0.8452 0.7924 0.9282 0.8820
(300, 0.85, F4(; 4, 1)) 0.8560 0.8346 0.9180 0.8960 0.9738 0.9598
(1000, 0.55, F4(; 4, 1)) 0.8200 0.7944 0.8876 0.8584 0.9538 0.9326
(1000, 0.85, F4(; 4, 1)) 0.8828 0.8758 0.9342 0.9254 0.9844 0.9780
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Table 3.3: Average interval lengths for R(F ) are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the normal approx-
imation method (NACI).

(n, a, F ) JELCI NACI JELCI NACI JELCI NACI
level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.3336 0.2416 0.4038 0.2879 0.5409 0.3784
(300, 0.85, F1(; 4)) 0.1217 0.1170 0.1485 0.1394 0.2041 0.1832
(1000, 0.55, F1(; 4)) 0.2405 0.1762 0.2939 0.2100 0.4028 0.2760
(1000, 0.85, F1(; 4)) 0.0678 0.0684 0.0830 0.0815 0.1142 0.1071
(300, 0.55, F2(; 0, 1)) 1.1940 1.1396 1.3265 1.3580 1.5084 1.7847
(300, 0.85, F2(; 0, 1)) 0.5835 0.5447 0.7034 0.6490 0.9342 0.8530
(1000, 0.55, F2(; 0, 1)) 0.9583 0.8167 1.0952 0.9731 1.3048 1.2789
(1000, 0.85, F2(; 0, 1)) 0.3319 0.3165 0.4016 0.3771 0.5446 0.4956
(300, 0.55, F3(; 4, 1)) 0.0996 0.0968 0.1209 0.1154 0.1643 0.1516
(300, 0.85, F3(; 4, 1)) 0.0911 0.0956 0.1097 0.1139 0.1461 0.1497
(1000, 0.55, F3(; 4, 1)) 0.0520 0.0545 0.0633 0.0649 0.0862 0.0853
(1000, 0.85, F3(; 4, 1)) 0.0498 0.0525 0.0596 0.0626 0.0788 0.0822
(300, 0.55, F4(; 4, 1)) 0.3132 0.2689 0.3809 0.3204 0.5221 0.4211
(300, 0.85, F4(; 4, 1)) 0.2043 0.2058 0.2454 0.2452 0.3273 0.3223
(1000, 0.55, F4(; 4, 1)) 0.1756 0.1582 0.2134 0.1885 0.2921 0.2477
(1000, 0.85, F4(; 4, 1)) 0.1092 0.1135 0.1314 0.1353 0.1750 0.1778

Table 3.4: Average interval lengths for r(F ) are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the naive bootstrap
method (NBCI).

(n, a, F ) JELCI NBCI JELCI NBCI JELCI NBCI
level 0.9 level 0.9 level 0.95 level 0.95 level 0.99 level 0.99

(300, 0.55, F1(; 4)) 0.1342 0.1273 0.1504 0.1445 0.1739 0.1761
(300, 0.85, F1(; 4)) 0.0268 0.0226 0.0326 0.0262 0.0445 0.0330
(1000, 0.55, F1(; 4)) 0.1218 0.1084 0.1387 0.1242 0.1650 0.1539
(1000, 0.85, F1(; 4)) 0.0182 0.0160 0.0220 0.0187 0.0307 0.0239
(300, 0.55, F2(; 0, 1)) 0.4298 0.3964 0.4838 0.4509 0.5661 0.5488
(300, 0.85, F2(; 0, 1)) 0.0743 0.0634 0.0881 0.0732 0.1134 0.0910
(1000, 0.55, F2(; 0, 1)) 0.3922 0.3423 0.4468 0.3923 0.5342 0.4827
(1000, 0.85, F2(; 0, 1)) 0.0535 0.0461 0.0646 0.0538 0.0864 0.0682
(300, 0.55, F3(; 4, 1)) 0.0277 0.0249 0.0337 0.0296 0.0460 0.0387
(300, 0.85, F3(; 4, 1)) 0.0059 0.0061 0.0072 0.0073 0.0097 0.0096
(1000, 0.55, F3(; 4, 1)) 0.0154 0.0144 0.0187 0.0171 0.0256 0.0224
(1000, 0.85, F3(; 4, 1)) 0.0030 0.0034 0.0036 0.0041 0.0049 0.0053
(300, 0.55, F4(; 4, 1)) 0.0851 0.0689 0.1019 0.0810 0.1322 0.1038
(300, 0.85, F4(; 4, 1)) 0.0152 0.0141 0.0185 0.0167 0.0253 0.0217
(1000, 0.55, F4(; 4, 1)) 0.0532 0.0442 0.0649 0.0521 0.0890 0.0673
(1000, 0.85, F4(; 4, 1)) 0.0084 0.0083 0.0102 0.0098 0.0140 0.0128
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|ψ′(x)| ≤ cxβ−2(1 − x)β−2 for all 0 < x < 1. Since E|X1|γ < ∞ with 1
γ

+ 1 − β < 1
2
,

we have

P (|X1| > x) = o(x−γ) as x→∞, (3.6)

which implies∫ ∞

0

(F (x))β−1+δ(1− F (x))β−1+δdx ≤ 2 + C

∫ ∞

1

x−(β−1+δ)γdx <∞ (3.7)

whenever δ ∈ ( 1
γ

+ 1− β, 1
2
), and

max
1≤j≤n

|Xj| = max
1≤j≤n

|F−(Uj)| = op(n
1/γ). (3.8)

It follows from the given conditions on ψ that

Ψ(
1

n
) = O(n−β) and Ψ(

1

n− 1
)−Ψ(

1

n
) = O(n−β−1). (3.9)

Lemma 3.2.3. Under the conditions of Theorem 3.2.1, we have

1√
n

n∑
i=1

(Yi −R0)
d→ N(0, σ2

1), (3.10)

where σ2
1 is given in (3.4).
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Proof. Write

Yi = (n− 1)

∫ ∞

0

{Ψ(Fn,i(t))−Ψ(Fn(t))}dt+ R̂n

= (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}dF−(t) + R̂n

= (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}I(Un,1 ≤ t < Un,n)dF
−(t) + R̂n

= (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}I(Un,1 ≤ t < Un,2)dF
−(t)

+ (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}I(Un,2 ≤ t < Un,n−1)dF
−(t)

+ (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}I(Un,n−1 ≤ t < Un,n)dF
−(t) + R̂n

= (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}I(Un,1 ≤ t < Un,2)dF
−(t)︸ ︷︷ ︸

Zi,1

+ (n− 1)

∫ 1

0

ψ(Gn(t)){Gn,i(t)−Gn(t)}I(Un,2 ≤ t < Un,n−1)dF
−(t)︸ ︷︷ ︸

Zi,2

+
n− 1

2

∫ 1

0

ψ′(ξn,i(t)){Gn,i(t)−Gn(t)}2I(Un,2 ≤ t < Un,n−1)dF
−(t)︸ ︷︷ ︸

Zi,3

+ (n− 1)

∫ 1

0

{Ψ(Gn,i(t))−Ψ(Gn(t))}I(Un,n−1 ≤ t < Un,n)dF
−(t)︸ ︷︷ ︸

Zi,4

+R̂n

= Zi,1 + Zi,2 + Zi,3 + Zi,4 + R̂n,

where

ξn,i(t) = Gn(t) + θi(t){Gn,i(t)−Gn(t)} = Gn(t) +
θi(t)

n− 1
{Gn(t)− I(Ui ≤ t)}

for some θi(t) ∈ [0, 1].

When Un,1 ≤ t < Un,2, we have

Gn(t) =
1

n
and Gn,i(t) =

 0 if Ui = Un,1

1
n−1

else.
(3.11)
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Hence, it follows from (3.8) and (3.9) that

n∑
i=1

Zi,1 = (n− 1)

∫ 1

0

{Ψ(0)−Ψ(
1

n
)}I(Un,1 ≤ t < Un,2)dF

−(t)

+ (n− 1)2

∫ 1

0

{Ψ(
1

n− 1
)−Ψ(

1

n
)}I(Un,1 ≤ t < Un,2)dF

−(t)

= −(n− 1)Ψ(
1

n
){F−(Un,2)− F−(Un,1)}

+ (n− 1)2{Ψ(
1

n− 1
)−Ψ(

1

n
)}{F−(Un,2)− F−(Un,1)}

= O((n− 1)n−β)op(n
1/γ) +O((n− 1)2n−1−β)op(n

1/γ)

= op(n
1/2−β+1/γ)

√
n

= op(
√
n)

(3.12)

since 1
2
− β + 1

γ
< 0. Similarly, we can show that

n∑
i=1

Zi,4 = op(
√
n). (3.13)

Since
∑n

i=1{Gn,i(t)−Gn(t)} = 0, we have

n∑
i=1

Zi,2 = 0. (3.14)

When t ≥ Un,2, we have

(n− 1)−1I(Ui ≤ t)

Gn(t)
≤ 1/(n− 1)

2/n
=

n

2(n− 1)
,

i.e.,

ξn,i(t) ≥ Gn(t){1−
n

2(n− 1)
}

uniformly in t ≥ Un,2. In the same manner, we can show that

1− ξn,i(t) ≥ (1−Gn(t)){1−
n

2(n− 1)
}

holds uniformly in t < Un,n−1. Hence, for n large enough,

(ξn,i(t), 1− ξn,i(t)) ≥
1

3
(Gn(t), 1−Gn(t)) (3.15)
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uniformly for Un,2 ≤ t < Un,n−1 and 1 ≤ i ≤ n.

Note that

sup
Un,2≤t≤Un,n−1

Gn(t)

t
= Op(1) and sup

Un,2≤t≤Un,n−1

1−Gn(t)

1− t
= Op(1) (3.16)

(see Page 404 of Shorack and Wellner [94]). It follows from (3.15) and (3.16) that

|Zi,3| = Op

(
n

∫ 1

0

tβ−2(1− t)β−2{Gn,i(t)−Gn(t)}2I(Un,2 ≤ t < Un,n−1)dF
−(t)

)
,

which coupled with (3.7) and (3.16) yields

n∑
i=1

Zi,3 = Op

(
n

∫ 1

0
tβ−2(1− t)β−2

n∑
i=1

{Gn,i(t)−Gn(t)}2I(Un,2 ≤ t < Un,n−1)dF−(t)

)

= Op

(
n

∫ 1

0
tβ−2(1− t)β−2 n

(n− 1)2
Gn(t){1−Gn(t)}I(Un,2 ≤ t < Un,n−1)dF−(t)

)
= Op

(∫ 1

0
tβ−1(1− t)β−1I(Un,2 ≤ t < Un,n−1)dF−(t)

)
= Op

(∫ 1−n−1

n−1

tβ−1(1− t)β−1dF−(t)

)

= Op

(
nδ
∫ 1−n−1

n−1

tβ−1+δ(1− t)β−1+δdF−(t)

)

= Op

(
nδ
∫ ∞

0
(F (x))β−1+δ(1− F (x))β−1+δdx

)
= Op(nδ)

(3.17)

for any δ ∈ ( 1
γ + 1− β, 1

2). By Jones and Zitikis [51], we have

√
n{R̂n −R} d→ N(0, σ2

1). (3.18)

Hence, the lemma follows from (3.12), (3.14), (3.17), (3.13) and (3.18).

Lemma 3.2.4. Under the conditions of Theorem 3.2.1, we have

1

n

n∑
i=1

(Yi −R)2 p→ σ2
1 as n→∞.
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Proof. We use the same notations Zi,j as in the proof of Lemma 3.2.3. Then, it follows

from (3.11) and (3.9) that

1
n

n∑
i=1

Z2
i,1 =

(n− 1)2

n

∫ 1

0

∫ 1

0
{Ψ(0)−Ψ(

1
n

)}2I(Un,1 ≤ t1, t2 < Un,2)dF−(t1)dF−(t2)

+
(n− 1)3

n

∫ 1

0

∫ 1

0
{Ψ(

1
n− 1

)−Ψ(
1
n

)}2I(Un,1 ≤ t1, t2 < Un,2)dF−(t1)dF−(t2)

= O(
(n− 1)2

n
n−2β)op(n2/γ) +O(

(n− 1)3

n
n−2−2β)op(n2/γ)

= op(1).

(3.19)

Similarly,

1

n

n∑
i=1

Z2
i,4 = op(1). (3.20)

It is easy to check that

1
n

n∑
i=1

Z2
i,2

=
(n− 1)2

n

∫ 1

0

∫ 1

0
ψ(Gn(t1))ψ(Gn(t2))

n∑
i=1

{Gn,i(t1)−Gn(t1)}{Gn,i(t2)−Gn(t2)}

× I(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)

=
∫ 1

0

∫ 1

0
ψ(Gn(t1))ψ(Gn(t2)){Gn(t1 ∧ t2)−Gn(t1)Gn(t2)}

I(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)

=2
∫ 1

0

∫ t1

0
ψ(Gn(t1))ψ(Gn(t2))Gn(t2){1−Gn(t1)}I(Un,1 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)︸ ︷︷ ︸

I0

.

By (3.16), we have

sup
Un,2≤t1,t2<Un,n−1

ψ(Gn(t1))ψ(Gn(t2))Gn(t2){1−Gn(t1)}

= Op

(
tβ−1
1 (1− t1)

β−1tβ−1
2 (1− t2)

β−1t2(1− t1)
)
.
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Similar to the proof of (3.7), we can show that∫ 1

0

∫ t1

0

tβ−1
1 (1− t1)

β−1tβ−1
2 (1− t2)

β−1t2(1− t1)dF
−(t2)dF

−(t1)

=

∫ ∞

0

∫ F−(t1)

0

F (x)β−1(1− F (x))β−1F (y)β−1(1− F (y))β−1F (y)(1− F (x))dydx

< ∞.

By the Glivenko-Cantelli theorem, sup0<t<1 |Gn(t) − t| → 0 almost surely. It then

follows from the dominated convergence theorem that

I0
p→
∫ 1

0

∫ t1

0

ψ(t1)ψ(t2)t2(1− t1)dF
−(t2)dF

−(t1).

Hence

1

n

n∑
i=1

Z2
i,2

p→
∫ 1

0

∫ 1

0

ψ(t1)ψ(t2){t1 ∧ t2 − t1t2}dF−(t2)dF
−(t1) = σ2

1. (3.21)

Note that

n∑
i=1

{Gn,i(t1)−Gn(t1)}2{Gn,i(t2)−Gn(t2)}2

=
n∑
i=1

{Gn(t1)
n− 1

− I(Ui ≤ t1)
n− 1

}2{Gn(t2)
n− 1

− I(Ui ≤ t2)
n− 1

}2

=
n

(n− 1)4
{−3G2

n(t1)G
2
n(t2) +G2

n(t1)Gn(t2) +Gn(t1)G2
n(t2) + 4Gn(t1)Gn(t2)Gn(t1 ∧ t2)

− 2Gn(t1)Gn(t1 ∧ t2)− 2Gn(t2)Gn(t1 ∧ t2) +Gn(t1 ∧ t2)}

=
n

(n− 1)4
{3Gn(t1)Gn(t2) (Gn(t1 ∧ t2)−Gn(t1)Gn(t2))︸ ︷︷ ︸

I1

−Gn(t1) (Gn(t1 ∧ t2)−Gn(t1)Gn(t2))︸ ︷︷ ︸
I2

−Gn(t2) (Gn(t1 ∧ t2)−Gn(t1)Gn(t2))︸ ︷︷ ︸
I3

+(1−Gn(t1))(1−Gn(t2))Gn(t1 ∧ t2)︸ ︷︷ ︸
I4

}

=
n

(n− 1)4
{I1 − I2 − I3 + I4}.

It follows from (3.16) that

sup
Un,2≤t1,t2≤Un,n−1

|Gn(t1 ∧ t2)−Gn(t1)Gn(t2)|
t1 ∧ t2 − t1t2

= Op(1),

sup
Un,2≤t1,t2≤Un,n−1

|Gn(t1 ∧ t2)(1−Gn(t1 ∨ t2)|
t1 ∧ t2(1− t1 ∨ t2)

= Op(1).
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This coupled with (3.15) and (3.16), yields that

1
n

n∑
i=1

Z2
i,3

=Op
((n− 1)2

4n

∫ 1

0

∫ 1

0
tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2

×
n∑
i=1

{Gn,i(t1)−Gn(t1)}2{Gn,i(t2)−Gn(t2)}2I(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)
)

=Op
(
n−2

∫ 1

0

∫ 1

0
tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2

× {I1 − I2 − I3 + I4}I(Un,2 ≤ t1, t2 < Un,n−1)dF−(t2)dF−(t1)
)
.

From the above equation we can get that

1

n

nX
i=1

Z2
i,3

=Op
`
n−2

Z Un,n−1

Un,2

Z Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2t1t2(t1 ∧ t2 − t1t2)dF−(t2)dF−(t1)| {z }
J1

´

+Op
`
n−2

Z Un,n−1

Un,2

Z Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2t1(t1 ∧ t2 − t1t2)dF−(t2)dF−(t1)| {z }
J2

´

+Op
`
n−2

Z Un,n−1

Un,2

Z Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2t2(t1 ∧ t2 − t1t2)dF−(t2)dF−(t1)| {z }
J3

´

+Op
`
n−2

Z Un,n−1

Un,2

Z Un,n−1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2(1− t1)(1− t2)(t1 ∧ t2)dF−(t2)dF−(t1)| {z }
J4

´

=Op(J1) +Op(J2) +Op(J3) +Op(J4).

It is easy to check from (3.7) that for every δ ∈ ( 1
γ

+ 1− β, 1
2
)

J2 + J3 =2n−2

∫ Un,n−1

Un,2

∫ t1

Un,2

tβ−2
1 (1− t1)β−2tβ−2

2 (1− t2)β−2(t1 + t2)t2(1− t1)dF−(t2)dF−(t1)

≤4n−2

∫ Un,n−1

Un,2

tβ−1
1 (1− t1)β−1

∫ t1

Un,2

tβ−1
2 (1− t2)β−2dF−(t2)dF−(t1)

=n−2

∫ 1

0
tβ−1
1 (1− t1)β−1O(U−δn,2 + (1− t1)−1−δ)dF−(t1)

=O(n−2U−δn,2)
∫ 1

0
tβ−1
1 (1− t1)β−1dF−(t1) +O(n−2)

∫ 1

0
tβ−1
1 (1− t1)β−2−δdF−(t1)

=O(n−2U−δn,2)(U
−δ
n,2 + (1− Un,n−1)−δ) +O(n−2)(U−δn,2 + (1− Un,n−1)−1−2δ)

=Op(n−2+2δ + n−1+2δ)

=op(1).

104



www.manaraa.com

Similarly, we can show that

J1 = op(1) and J4 = op(1).

Hence,

1

n

n∑
i=1

Z2
i,3 = op(1). (3.22)

Since R̂n
p→ R, we have

1

n

n∑
i=1

(R̂n −R)2 = op(1). (3.23)

It follows from (3.19), (3.20), (3.22) and (3.23) that

1

n

n∑
i=1

{Zi,1 +Zi,3 +Zi,4 + R̂n−R}2 = O(
1

n

n∑
i=1

{Z2
i,1 +Z2

i,3 +Z2
i,4 +(R̂n−R)2}) = op(1).

(3.24)

Note that

1

n

n∑
i=1

Zi,2{Zi,1 + Zi,3 + Zi,4 + R̂n −R}

≤

√√√√ 1

n

n∑
i=1

Z2
i,2

√√√√ 1

n

n∑
i=1

{Zi,1 + Zi,3 + Zi,4 + R̂n −R}2

= op(1).

(3.25)

Therefore, the lemma follows from (3.19)–(3.25).

Proof of Theorem 3.2.1. First we observe by using (3.7) that for any δ ∈ ( 1
γ
+1−β, 1

2
),

max
1≤i≤n

|Zi,2| ≤
∫ 1

0

ψ(Gn(t))I(Un,2 ≤ t < Un,n−1)dF
−(t)

= Op

(∫ Un,n−1

Un,2

tβ−1(1− t)β−1dF−(t)

)

= Op(U
−δ
n,2 + (1− Un,n−1)

−δ)

= op(n
1/2).

(3.26)

Similarly we can show that

max
1≤i≤n

|Zi,j| = op(n
1/2) for j = 1, 3, 4.
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Hence, max1≤i≤n |Yi| = op(n
1/2). By the standard arguments in the empirical likeli-

hood method (see Chapter 11 of Owen [73]), it follows from Lemmas 3.2.3 and 3.2.4

that

−2 logL1(R) =
{
∑n

i=1(Yi −R)}2∑n
i=1(Yi −R)2

+ op(1)
d→ χ2(1).

In order to prove Theorem 3.2.3, we need the following lemmas.

Lemma 3.2.5. Under the conditions of Theorem 3.2.3, we have

√
n

(
R̂n −

R(F )

µ

1

n

n∑
i=1

Xi

)
d→ N(0, σ̄2) as n→∞,

where

σ̄2 =

∫ 1

0

∫ 1

0

ψ(t1)ψ(t2)(t1 ∧ t2 − t1t2)dF
−(t1)dF

−(t2) +
R2(F )

µ2
E(X1 − µ)2

+ 2
R(F )

µ

∫ 1

0

∫ 1

0

ψ(t1)(t1 ∧ t2 − t1t2)dF
−(t1)dF

−(t2).

Proof. It is known that there exists a Brownian bridge W such that

sup
0≤t≤1

√
n(Gn(t)− t)−W (t)

tδ0(1− t)δ0
= op(1) (3.27)

for any δ0 ∈ (0, 1/2) (see Chapter 4 of Csorgo and Horvath [22]). It follows from (3.8)

and (3.9) that

√
n
∫ 1

0
{Ψ(t)−Ψ(Gn(t))}I(t < Un,1) dF

−(t)

=
√
n
∫ Un,1

0
Ψ(t) dF−(t)

≤
√
nΨ(Un,1)F

−(Un,1)

= op(
√
nn−βn1/γ)

= op(1).

(3.28)

Similarly we can show that
√
n
∫ 1

0
{t−Gn(t)}ψ(t)I(t < Un,1) dF

−(t) = op(1)

√
n
∫ 1

0
{Ψ(t)−Ψ(Gn(t))}I(t > Un,n−1) dF

−(t) = op(1)

√
n
∫ 1

0
{t−Gn(t)}ψ(t)I(t < Un,n−1) dF

−(t) = op(1).

(3.29)
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Note that (3.16) holds with Un,2 replaced by Un,1 and we assume β ≤ α in the

beginning of Section 3.2.4. Hence, by the Taylor expansion, (3.27), (3.7) and choosing

δ0 close to 1/2 enough such that δ + 1/2 − 2δ0 < 0 with δ ∈ (1/γ + 1 − β, 1/2) , we

have
√
n
∫ 1

0
{Ψ(t)−Ψ(Gn(t))− (t−Gn(t))ψ(t)}I(Un,1 ≤ t ≤ Un,n−1) dF

−(t)

=
√
n
∫ Un,n−1

Un,1

1
2
ψ′(ξ){t−Gn(t)}2 dF−(t)

= Op

(
1√
n

∫ 1−n−1

n−1 tβ−2(1− t)β−2t2δ0(1− t)2δ0 dF−(t)
)

= Op

(
n−1/2+δ+1−2δ0

∫ 1−n−1

n−1 tβ−1+δ(1− t)β−1+δ dF−(t)
)

= Op

(
nδ+1/2−2δ0

∫∞
0

(F (x))β−1+δ(1− F (x))β−1+δ dx
)

= op(1),

(3.30)

where ξ depends on t and lies between t and Gn(t). It follows from (3.27)–(3.30) that

√
n

∫ 1

0

{Ψ(t)−Ψ(Gn(t))} dF−(t) +

∫ 1

0

ψ(t)W (t) dF−(t) = op(1).

Therefore

√
n{R̂n −

R(F )

µ

1

n

n∑
i=1

Xi}

=
√
n

∫ 1

0

{Ψ(t)−Ψ(Gn(t))}dF−(t) +
R(F )

µ

√
n

∫ 1

0

{t−Gn(t)}dF−(t)

d→−
∫ 1

0

ψ(t)W (t)dF−(t)− R(F )

µ

∫ 1

0

W (t)dF−(t).

Lemma 3.2.6. Under the conditions of Theorem 3.2.3, we have

1√
n

n∑
i=1

(
Yi −

R(F )

µ
Xi

)
d→ N(0, σ̄2) as n→∞.

Proof. It can be shown in a way similar to the proof of Lemma 3.2.3.

Lemma 3.2.7. Under the conditions of Theorem 3.2.3, we have

1

n

n∑
i=1

(
Yi −

R(F )

µ
Xi

)2
p→ σ̄2 as n→∞.

Proof. It can be proved in a similar way to the proof of Lemma 3.2.4.

Proof of Theorem 3.2.3. This can be done in a way similar to the proof of Theorem

3.2.1.
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3.3 Interval Estimation for Spearman’s Rho

In connection with copulas, rank correlation such as Kendall’s tau and Spearman’s

rho has been employed in risk management for summarizing dependence among two

variables and estimating some parameters in bivariate copulas and elliptical models.

In this paper, a jackknife empirical likelihood method is proposed to construct con-

fidence intervals for Spearman’s rho without estimating the asymptotic variance. A

simulation study confirms the advantages of the proposed method.

3.3.1 Introduction

Correlation has been used to summarize dependence among variables for a long history

and plays an important role in modern finance such as Capital Asset Pricing Model

and portfolio selection. Given the fact that copula and elliptical distributions have

been heavily employed in risk management, copula-based dependence measures such

as Kendall’s tau and Spearman’s rho are receiving more and more attention. Some

pitfalls on using the linear correlation measure in elliptical models are given in Em-

brechts, McNeil and Straumann [34]. Advantages of using Kendall’s tau and Spear-

man’s rho include estimating some parameters in copulas. For example, if (X, Y ) is

a bivariate meta-Gaussian distribution with copula

CGa
ρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
exp{−s

2
1 − 2ρs1s2 + s2

2

2(1− ρ2)
}ds1ds2

and continuous marginals, where Φ−1 denotes the inverse function of the standard

normal distribution function, then the Kendall’s tau and Spearman’s rho can be

written as

τ =
2

π
arc sin ρ and ρs =

6

π
arc sin

ρ

2
.

Therefore ρ can be estimated via estimating τ and ρs. More details can be found in

Chapter 5.3 of McNeil, Frey and Embrechts [65].

Let (X1, Y1), · · · , (Xn, Yn) be independent random vectors with distribution func-

tion H and continuous marginals F (x) = H(x,∞) and G(y) = H(∞, y). Then the
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Kendall’s tau and Spearman’s rho are defined as

τ = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]

and

ρs = 12E[(F (X1)− 1/2)(G(Y1)− 1/2)],

respectively. Define

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) and Gn(x) =
1

n

n∑
i=1

I(Yi ≤ x).

Then the simple nonparametric estimators for τ and ρs are

τ̂n =
2

n(n− 1)

∑
1≤i<j≤n

{I((Xi −Xj)(Yi − Yj) > 0)− I((Xi −Xj)(Yi − Yj) < 0)}

and

ρ̂sn =
12

n

n∑
i=1

{Fn(Xi)− 1/2}{Gn(Yi)− 1/2},

respectively.

In order to construct confidence intervals for τ and ρs, one can simply use the

asymptotic limits of
√
n{τ̂n − τ} and

√
n{ρ̂sn − ρs}. However, this method requires

to estimate the asymptotic variances. As shown in the next section, the asymptotic

variance of ρ̂sn is quite complicated and it is hard to estimate it explicitly. Most

likely, it involves density estimation and numerical integration. Therefore, boot-

strap method is a common way to construct a confidence interval for the Spearman’s

rho. As an alternative way of constructing confidence intervals, empirical likelihood

method introduced in Chapter I is powerful in dealing with linear functionals with-

out estimating any extra quantities such as asymptotic variance. Since the Kendall’s

tau and Spearman’s rho are non-linear functionals, a direct application of empirical

likelihood method fails to obtaining a chi-square limit, and the jackknife empirical

likelihood method is required. Noting that τ̂n is a U-statistic, one can directly em-

ploy the method in Jing, Yuan and Zhou [47] to construct confidence intervals for the
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Kendall’s tau without estimating the asymptotic variance. In this section, we employ

the jackknife empirical likelihood method to construct confidence intervals for the

Spearman’s rho and investigate the finite sample behavior of the proposed method.

We organize the rest of this section as follows. Section 3.3.2 presents the method-

ology and asymptotic results. A simulation study and a real data analysis are given

in Section 3.3.3. All proofs are put in Section 3.3.4.

3.3.2 Methodology

Define the copula and empirical copula of (Xi, Yi) as

C(x, y) = P(F (X1) ≤ x,G(Y1) ≤ y)

and

Cn(x, y) =
1

n

n∑
i=1

I(Fn(Xi) ≤ x,Gn(Yi) ≤ y),

respectively. Put

C1(x, y) =
∂

∂x
C(x, y) and C2(x, y) =

∂

∂y
C(x, y).

Assume that C1(x, y) exists and is continuous on the set {(x, y) : 0 < x < 1, 0 ≤ y ≤ 1},

C2(x, y) exists and is continuous on the set {(x, y) : 0 ≤ x ≤ 1, 0 < y < 1}.
(3.31)

Then it follows from Proposition 3.1 of Segers [90] that

sup
0≤x,y≤1

|
√
n{Cn(x, y)−C(x, y)}−W (x, y)+C1(x, y)W (x, 1)+C2(x, y)W (1, y)| = op(1),

(3.32)

where W (x, y) is a Gaussian process with mean zero and covariance

E[W (x1, y1)W (x2, y2)] = C(x1 ∧ x2, y1 ∧ y2)− C(x1, y1)C(x2, y2). (3.33)

Note that (3.50) holds via the Skorohod construction. By (3.50), we have

√
n{ρ̂sn − ρs} = 12

∫ 1

0

∫ 1

0

√
n{Cn(x, y)− C(x, y)}dxdy

d→ 12
∫ 1

0

∫ 1

0
{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy.
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Hence, the asymptotic limit depends on the copula C(x, y) and its partial derivatives.

In order to avoid estimating the complicated asymptotic variance for constructing

confidence intervals for ρs, we employ the following jackknife empirical likelihood

method.

Define 

Fn,i(x) = 1
n−1

∑n
j=1,j 6=i I(Xj ≤ x),

Gn,i(x) = 1
n−1

∑n
j=1,j 6=i I(Yj ≤ x),

ρ̂sn,i = 12
n−1

∑n
j=1,j 6=i{Fn,i(Xj)− 1/2}{Gn,i(Yj)− 1/2}

Zi = nρ̂sn − (n− 1)ρ̂sn,i

for i = 1, · · · , n. As in Jing, Yuan and Zhou [47], a jackknife empirical likelihood

function for θ = ρs is defined as

L(θ) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZi = θ}.

By the Lagrange multiplier technique, we obtain that pi = n−1{1 + λ(Zi− θ)}−1 and

−2 logL(θ) = 2
∑n

i=1 log{1 + λ(Zi − θ)}, where λ = λ(θ) satisfies

1

n

n∑
i=1

Zi − θ

1 + λ(Zi − θ)
= 0. (3.34)

The following theorem shows that Wilks’ Theorem holds for the proposed jackknife

empirical likelihood method.

Theorem 3.3.1. Assume condition (3.31) holds. Then −2 logL(ρs) converges in

distribution to a chi-square distribution with one degree of freedom as n→∞.

Based on the above theorem, a jackknife empirical likelihood confidence interval

for ρs with level α can be obtained as

Iα = {θ : −2 logL(θ) ≤ χ2
1,α},

where χ2
1,α denotes the α quantile of a chi-square distribution with one degree of

freedom.
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3.3.3 Simulation study and data analysis

Simulation study. We investigate the finite sample behavior of the proposed jack-

knife empirical likelihood method and compare it with the normal approximation

method in terms of coverage accuracy.

We draw 10, 000 random samples of sample size n = 100, 300 from a bivariate nor-

mal distribution with correlation ρ and marginals being the standard normal distribu-

tion. In this case, the Spearman’s rho equals 6
π
arc sin(ρ/2). We calculate the jackknife

empirical likelihood interval Iα at levels α = 0.9, 0.95, 0.99 for ρ = 0,±0.2,±0.8, which

correspond to ρs = 0,±0.1913,±0.7859, respectively. For constructing a confidence

interval based on the asymptotic limit of ρ̂sn, we employ the percentile bootstrap con-

fidence interval. More specifically, we draw 1, 000 bootstrap samples of size n from

each original sample. Based on each bootstrap sample, we calculate the Spearman’s

rho estimator. Therefore we obtained 1, 000 bootstrapped Spearman’s rho estima-

tors denoted by ρ̂s∗n,1, · · · , ρ̂s∗n,1000. Let c1 and c2 denote the [1000(1 − α)/2] − th and

[1000(1 + α)/2] − th largest order statistics of {ρ̂s∗n,i − ρ̂sn}1000
i=1 . Hence, the percentile

bootstrap confidence interval for ρs with level α is

IBα = (ρ̂sn − c2, ρ̂sn − c1).

The empirical coverage probabilities and average interval lengths for both Iα and

IBα are reported in Tables 3.5 and 3.6, which show that i) the proposed jackknife

empirical likelihood method produces much more accurate confidence intervals than

the percentile bootstrap method in most cases, specially for n = 100; ii) the interval

lengths of the jackknife empirical likelihood method are slightly longer.

Data analysis. Next, we apply the proposed method to the Danish fire insurance

claims. This data set is available at www.ma.hw.ac.uk/∼mcneil/, which consists

of loss to buildings, loss to contents and loss to profits. As described there, the

data were collected at the Copenhagen Reinsurance Company and comprise 2167
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Table 3.5: Coverage probabilities for the intervals Iα and IBα at levels α =
0.9, 0.95, 0.99 are reported for n = 100, 300 and ρ = 0,±0.2,±0.8.

(n, ρ) I0.9 IB0.9 I0.95 IB0.95 I0.99 IB0.99
(100, 0) 0.9024 0.8874 0.9524 0.9352 0.9898 0.9794

(100, 0.2) 0.9016 0.8867 0.9524 0.9349 0.9900 0.9791
(100,−0.2) 0.9003 0.8858 0.9513 0.9347 0.9896 0.9773
(100, 0.8) 0.9013 0.8876 0.9473 0.9264 0.9850 0.9624

(100,−0.8) 0.8926 0.8691 0.9390 0.9105 0.9818 0.9509
(300, 0) 0.9055 0.8999 0.9530 0.9476 0.9915 0.9864

(300, 0.2) 0.9035 0.8996 0.9513 0.9440 0.9906 0.9852
(300,−0.2) 0.9073 0.9017 0.9529 0.9467 0.9908 0.9860
(300, 0.8) 0.9037 0.8957 0.9529 0.9393 0.9900 0.9776

(300,−0.8) 0.9008 0.8920 0.9505 0.9377 0.9899 0.9782

Table 3.6: Average interval lengths for Iα and IBα at levels α = 0.9, 0.95, 0.99 are
reported for n = 100, 300 and ρ = 0,±0.2,±0.8.

(n, ρ) I0.9 IB0.9 I0.95 IB0.95 I0.99 IB0.99
(100, 0) 0.337 0.332 0.403 0.394 0.529 0.515

(100, 0.2) 0.327 0.322 0.391 0.383 0.515 0.501
(100,−0.2) 0.327 0.322 0.390 0.382 0.515 0.499
(100, 0.8) 0.148 0.148 0.177 0.177 0.235 0.236

(100,−0.8) 0.147 0.147 0.176 0.175 0.234 0.231
(300, 0) 0.192 0.190 0.229 0.227 0.302 0.298

(300, 0.2) 0.186 0.185 0.222 0.220 0.293 0.289
(300,−0.2) 0.186 0.185 0.222 0.220 0.293 0.288
(300, 0.8) 0.083 0.082 0.099 0.098 0.130 0.129

(300,−0.8) 0.083 0.082 0.099 0.098 0.130 0.128
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fire losses over the period 1980 to 1990. They have been adjusted for inflation to

reflect 1985 values and are expressed in millions of Danish Kroner. Here we consider

the first two variables: loss to building and loss to contents; see Figure 1 below. For

computing IBα , we draw 1, 000 bootstrap samples as before. We find that ρ̂sn = 0.1411,

IB0.9 = (0.0959, 0.1866), IB0.95 = (0.0897, 0.1942), I0.9 = (0.0962, 0.1862) and

I0.95 = (0.0882, 0.1952), which show that the proposed jackknife empirical likelihood

method produces similar interval length as the bootstrap method. Both intervals

indicate the Spearman’s rho is positive, which means that the loss to contents is

positively correlated with the loss to profits.

l l

l
ll

ll l

l

l

l

l ll

l
l

l

l l

l

l
l

l

l
llll ll ll

l l

l

l

l

l
ll l l
l

l

ll

l

l
l llll
ll

l

l

l
l

l

l

l
lllll lll

ll

l

ll l
ll

l
lll

l
l
ll l

l
ll

l

l l llll
l

l

l
l

l

l

l

l
l l

l
l

lll
l llll

l

l

l
l l

l

l

l

l l ll
l

l l
ll

l l llll l

l

llll ll l

l
l lll

l
lll

l
ll ll lll
l

l
l

l
l

lllll
l ll l

l
l

l
l

l

l
llll

ll l l
ll
l
l

l lll l
ll l
l

l

l ll
l

lll llll

l

lll

l

llll ll l
l

ll
ll

ll

l

llll lllll ll

l

l ll

l

ll

ll

l l llll

l

ll

l

l
l

ll l
l

l

l
l llll lll llllll

l
l

ll ll
l

l

l

l

l

l

llll
l
lll l

l
ll

l
l

l

l ll
llll
ll ll l

l

l

llll
lll lllll
l

ll l
ll l

l l

l

l
llll
l l
llll lll l

l ll llll lllll llll

l

l ll l
l

l
ll

l

l

ll ll

l

l

l

lll
l

lll ll
l

ll

ll
ll llll ll

l

l llllll ll llll llll

l

ll ll l

l

l

l

l

l l l
l l llll

lll l lll
l

l

ll

lllllll ll l
l

l

llll ll llll lll llllll
ll llllll l

l

llll
l

l lll
l l

l
l

l
l
ll ll

l

ll l
l

l
l

l
llll lllll l llll ll
l

ll l
l
ll

l
ll l l

l

ll

l

ll

l

l

l

l lllll
ll l

l

l

l

l
l

ll llll ll l
l

ll l
l
lll

l
l

l
l

l

l

l

ll
l
l

l
ll

l
ll l

ll l
l
ll

l llll
l

l

l

ll ll l

l

l l

l

ll l

l

l lll l
l

lll l l
l

l

l

l l
l

l

ll
lll

l

lll
l

ll llll
l

l

lll l

l

ll
l l l
lll

l
lll llllll llllll l

l

l l l llll l

l

ll

l
ll lll
l

ll
l
l

l

l ll

l

l
ll lll ll l
l

l

l

lllll

l

l

l

llllll
l

l
l

l

l

l llll
l

l
l

lllll ll
l

llll
l

llllll
l
ll ll

l

llll
l

ll
l

l llll ll

l

lllll lll
l

ll

l
l

ll llll
l

ll l lll
l
l l

l

l
l

l ll lll

ll

l

l

lll l

l

l
l
l l ll ll

l ll llll l lll
l

l

l lll

l

l lll
l

lllll

l

lll ll lll lll lll
l

l

l

llll llllll ll

l

l

l

ll

l
l

l

l

llllll

l

l ll lll
l
l l

l

l

l ll l llll
lllll lll ll ll

l

l

l
l l

l
l

l
l
ll
lll

l
l

l l
ll l

ll

l

l
l

l
l
l
llll

l

l ll
l

l
l

l
llll lll lll

l

lll
l

lll ll

l

l
l ll

l
l

l

l

ll
l

l l
ll lllll

l

llll
ll

l

l l l
l

l

l

llll

l

l l

l

lll ll

l

l
l

ll

l

ll

l

l l

l

l
ll ll lllll

l ll

l

l

l

l

l llll ll
ll

l

l

l l
l
lll l

l

llll

l

lll llll l l
ll

l

ll l
l

l

l

l
l l l

l

l

l

llll ll ll lll
l

l

l

ll l

l

ll
l
lll

l

l l
l

l

l

l l
l

l

l

ll l
ll

l
l

ll l

l

ll

l

lll

l

ll
ll

ll lll ll lll

l

l ll
l
l

l

l

l
l llll lll lllll l

l

l

l

l
l

l

ll
lllllll

l
lllll lllll

l

l

ll ll
l

ll l

l

lll

l

l

l
ll
l

lll
ll

l
l ll

l
lllll llll ll lll llllllll ll lll ll
l ll l l

ll
l llll l

l

llll llll
ll lll

l

l
l

l

l
llll l lllll

l
l
lll ll lll

l

l
l

l l

l

ll llllll ll l ll

l

ll ll ll ll ll

l
ll

lll
ll l

l

l

l
llll l lll lllll ll llll

l
ll

l

l

l

l
l llll lll
l

l l
l
lll lll

l

l
ll lll ll lll

l
l

0 20 40 60 80

0
20

40
60

80
10

0
12

0

Loss of Building

Lo
ss

 o
f C

on
te

nt
s

Danish Fire Insurance Claims

Figure 3.1: Scatterplot of the Danish fire insurance data.

3.3.4 Proofs

Before proving Theorem 3.3.1, we show the following two lemmas.
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Lemma 3.3.2. Under conditions of Theorem 3.3.1, we have

√
n{ 1

n

∑n
i=1 Zi − ρs} d→ 12

∫ 1

0

∫ 1

0
{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy

d
= N(0, σ2)

as n→∞, where

σ2 = E[(12

∫ 1

0

∫ 1

0

{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy)2].

Proof. For i = 1, · · · , n, write

Zi − ρs

= nρ̂sn − (n− 1)ρ̂sn,i − ρs

= 12
n∑
j=1

(Fn(Xj)− 1/2)(Gn(Yj)− 1/2)− 12
∑
j 6=i

(Fn,i(Xj)− 1/2)(Gn,i(Yj)− 1/2)− ρs

= 12
∑
j 6=i

[(Fn(Xj)− 1/2)(Gn(Yj)− 1/2)− (Fn,i(Xj)− 1/2)(Gn,i(Yj)− 1/2)]

+(12(Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs)

= 12

∑
j 6=i

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2) +
∑
j 6=i

(Gn(Yj)−Gn,i(Yj))(Fn(Xj)− 1/2)

+
∑
j 6=i

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)−Gn,i(Yj))

+ (12(Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs)

= 12

∑
j 6=i

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2) +
∑
j 6=i

(Gn(Yj)−Gn,i(Yj))(Fn(Xj)− 1/2)


+O(1/n) + (12(Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs)

= 12{
n∑
j=1

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)︸ ︷︷ ︸
V1,i

+
n∑
j=1

(Gn(Yj)−Gn,i(Yj))(Fn(Xj)− 1/2)︸ ︷︷ ︸
V2,i

+((Fn(Xi)− 1/2)(Gn(Yi)− 1/2)− ρs/12)︸ ︷︷ ︸
V3,i

}+O(1/n).

Thus

1√
n

n∑
i=1

(Zi − ρs) =
12√
n

n∑
i=1

(Vi,1 + Vi,2 + Vi,3) +O(1/
√
n).
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We already have

12√
n

n∑
i=1

V3,i =
√
n(ρ̂sn − ρs)

d→ 12

∫ 1

0

∫ 1

0

{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy.

It is easy to check that

1√
n

n∑
i=1

V1,i =
1√
n

n∑
i=1

n∑
j=1

(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)

=
1√
n

n∑
j=1

(Gn(Yj)− 1/2)
n∑
i=1

(Fn(Xj)− Fn,i(Xj))

=
1√
n

n∑
j=1

(Gn(Yj)− 1/2)× 0

= 0.

Similarly

1√
n

n∑
i=1

V2,i = 0.

Thus it follows from the above equations that

1√
n

n∑
i=1

(Zi − ρs)
d→ 12

∫ 1

0

∫ 1

0

{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy.

Lemma 3.3.3. Under conditions of Theorem 3.3.1, we have

1

n

n∑
i=1

(Zi − ρs)2 p→ σ2 as n→∞.

Proof. Write

σ2

= E[(12

∫ 1

0

∫ 1

0

{W (x, y)− C1(x, y)W (x, 1)− C2(x, y)W (1, y)}dxdy)2]

= 144E[(

∫∫
W (x, y)dxdy︸ ︷︷ ︸

A1

−
∫∫

C1(x, y)W (x, 1)dxdy︸ ︷︷ ︸
A2

−
∫∫

C2(x, y)W (1, y)dxdy︸ ︷︷ ︸
A3

)2]

= 144E[A2
1 + A2

2 + A2
3 − 2A1A2 − 2A1A3 + 2A2A3],
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where by convention we use
∫

=
∫ 1

0
. Using (3.33) we have

E(A2
1) =

∫∫∫∫
(C(x1 ∧ x2, y1 ∧ y2)− C(x1, y1)C(x2, y2))dx1dx2dy1dy2

= 4
∫∫

C(x, y)(1− x)(1− y)dxdy −
(∫∫

C(x, y)dxdy
)2
,

(3.35)

E(A2
2) =

∫∫∫∫
C1(x1, y1)C1(x2, y2)(x1 ∧ x2 − x1x2)dx1dx2dy1dy2, (3.36)

and

E(A2
3) =

∫∫∫∫
C2(x1, y1)C2(x2, y2)(y1 ∧ y2 − y1y2)dx1dx2dy1dy2. (3.37)

By integration by parts, we have

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2

=
∫∫

C(1, y1)C(1, y2)dy1dy2 −
∫∫∫

C1(x1, y2)C(x1, y1)dx1dy1dy2

= 1
4
−
∫∫∫

C1(x1, y2)C(x1, y1)dx1dy1dy2,

which implies that ∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2 =

1

8
. (3.38)

Similarly, ∫∫∫
x1C1(x1, y1)C(x1, y2)dx1dy1dy2

=

∫∫
C(1, y1)C(1, y2)dy1dy2

−
∫∫∫

(x1C1(x1, y1)C(x1, y2)− C(x1, y1)C(x1, y2))dx1dy1dy2,

which implies that

2

∫∫∫
x1C1(x1, y1)C(x1, y2)dx1dy1dy2 +

∫∫∫
C(x1, y1)C(x1, y2)dx1dy1dy2 =

1

4
.

(3.39)
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It follows from (3.38), (3.39) and (3.33) that

E(A1A2)

=
∫∫∫

C1(x1, y1)(C(x1 ∧ x2, y2)− x1C(x2, y2))dx1dx2dy1dy2

=
∫∫∫

C1(x1, y1)C(x1, y2)dx1dy1dy2 −
∫∫∫

x1C1(x1, y1)C(x1, y2)dx1dy1dy2

−
∫∫∫

C(x1, y1)C(x1, y2)dx1dy1dy2 +
(∫∫

C(x, y)dxdy
)2

= −1
8

+
∫∫∫

x1C1(x1, y1)C(x1, y2)dx1dy1dy2 +
(∫∫

C(x, y)dxdy
)2
.

(3.40)

Using the same arguments, we can show that

E(A1A3) = −1

8
+

∫∫∫
y1C2(x1, y1)C(x2, y1)dx1dx2dy1 +

(∫∫
C(x, y)dxdy

)2

,

(3.41)

and

E(A2A3) =

∫∫∫∫
C1(x1, y1)C2(x2, y2)(C(x1, y2)− x1y2)dx1dx2dy1dy2. (3.42)

Note that

1
n

∑n
i=1(Zi − ρs)2 = 144

n

∑n
i=1(V1,i + V2,i + V3,i +O(1/n))2

= 144
n

∑n
i=1(V1,i + V2,i + V3,i)

2 +O(1/n)
(3.43)

since V1,i, V2,i and V3,i are uniformly bounded for i = 1, · · · , n. A straightforward

calculation shows that

1
n

∑n
i=1 V

2
1,i

= 1
n

∑n
i=1

(∑n
j=1(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)

)2

= 1
n

∑n
i=1

∑n
j=1

∑n
k=1(Fn(Xj)− Fn,i(Xj))(Gn(Yj)− 1/2)(Fn(Xk)− Fn,i(Xk))(Gn(Yk)− 1/2)

= 1
n

∑n
j=1

∑n
k=1(Gn(Yj)− 1/2)(Gn(Yk)− 1/2)

∑n
i=1(Fn(Xj)− Fn,i(Xj))(Fn(Xk)− Fn,i(Xk))

= 1
(n−1)2

∑n
j=1

∑n
k=1(Gn(Yj)− 1/2)(Gn(Yk)− 1/2)(Fn(Xj ∧Xk)− Fn(Xj)Fn(Xk))

p→
∫∫∫∫

(y1 − 1
2)(y2 − 1

2)(x1 ∧ x2 − x1x2)C(dx1, dy1)C(dx2, dy2)

=
∫∫

1
4(x1 ∧ x2 − x1x2)dx1dx2 −

∫∫∫
(x1 ∧ x2 − x1x2)C1(x1, y1)dx1dx2dy1

+
∫∫∫∫

C1(x1, y1)C1(x2, y2)(x1 ∧ x2 − x1x2)dx1dx2dy1dy2

= 1
48 + 1

2

∫∫
C(x, y)dxdy −

∫∫
xC(x, y)dxdy + E(A2

2)
(3.44)
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as n→∞. Similarly, we can show that

1

n

n∑
i=1

V 2
2,i

p→ 1

48
+

1

2

∫∫
C(x, y)dxdy −

∫∫
yC(x, y)dxdy + E(A2

3), (3.45)

1
n

∑n
i=1 V

2
3,i

p→
∫∫

(x− 1
2
)2(y − 1

2
)2C(dx, dy)− (ρs/12)2

=
∫∫

(x− 1
2
)(y − 1

2
)C(x, y)dxdy − 1

48
−
(∫∫

C(x, y)dxdy − 1
4

)2
= 4

∫∫
(x− 1)(y − 1)C(x, y)dxdy +

∫∫
2(x+ y)C(x, y)dxdy − 3

∫∫
C(x, y)dxdy

− 1
48
−
(∫∫

C(x, y)dxdy
)2

+ 1
2

∫∫
C(x, y)dxdy − 1

16

= E(A2
1) +

∫∫
2(x+ y)C(x, y)dxdy − 5

2

∫∫
C(x, y)dxdy − 1

12
,

(3.46)

1
n

∑n
i=1 V1,iV2,i

p→
∫∫∫∫

(x2 − 1
2
)(y1 − 1

2
)(C(x1, y2)− x1y2)C(dx1, dy1)C(dx2, dy2)

=
∫∫

1
4
(C(x1, y2)− x1y2)dx1dy2 −

∫∫∫
1
2
C2(x2, y2)(C(x1, y2)− x1y2)dx1dx2dy2

−
∫∫∫

1
2
C1(x1, y1)(C(x2, y1)− x2y1)dx1dy1dy2

+
∫∫∫∫

C1(x1, y1)C2(x2, y2)(C(x1, y2)− x1y2)dx1dx2dy1dy2

= 3
16
− 1

4

∫∫
C(x, y)dxdy − 1

2

∫∫
C2(x2, y2)C(x1, y2)dx1dx2dy2

−1
2

∫∫
C1(x1, y1)C(x2, y1)dx1dy1dy2 + E(A2A3),

(3.47)
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1
n

∑n
i=1 V1,iV3,i

= 1
n

∑n
j=1

∑n
i=1(Fn(Xj)− Fn,i(Xj))[(Fn(Xi)− 1

2)(Gn(Yi)− 1
2)− ρ2/12](Gn(Yj)− 1

2)

= 1
n2

∑n
j=1

∑n
i=1[I(Xi ≤ Xj)− Fn(Xj)][(Fn(Xi)− 1

2)(Gn(Yi)− 1
2)− ρ2/12](Gn(Yj)− 1

2)
p→

∫∫∫∫ 1
x2=x1

(y2 − 1
2)C(dx2, dy2)[(x1 − 1

2)(y1 − 1
2)− ρs/12]C(dx1, dy1)

=
∫∫∫

(y2 − 1
2)(1− C2(x1, y2))dy2[(x1 − 1

2)(y1 − 1
2)− ρs/12]C(dx1, dy1)

=
∫∫∫

−(y2 − 1
2)C2(x1, y2)dy2(x1 − 1

2)(y1 − 1
2)C(dx1, dy1)− (ρs/12)2

=
∫∫ (∫

C(x1, y2)dy2 − 1
2x1

)
(x1 − 1

2)(y1 − 1
2)C(dx1, dy1)− (ρs/12)2

= 1
2

∫∫
x1C(x1, y2))dx1dy2 − 1

4

∫∫
C(x, y)dxdy − 1

12 + 1
16 +

∫∫
x1C1(x1, y1)(x1 − 1

2)dx1dy1

−
∫∫∫

C1(x1, y1)C(x1, y2)(x1 − 1
2)dx1dy1dy2 − (ρs/12)2

= 1
2

∫∫
xC(x, y)dxdy − 1

48 + 1
4 −

∫∫
xC(x, y)dxdy − 1

8 −
∫∫∫

x1C1(x1, y1)C(x1, y2)dx1dy1dx2

+1
2

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2 −

(∫∫
C(x, y)dxdy − 1

4

)2
= 1

24 −
1
2

∫∫
xC(x, y)dxdy −

∫∫∫
x1C1(x1, y1)C(x1, y2)dx1dy1dx2

+1
2

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2 + 1

2

∫∫
C(x, y)dxdy −

(∫∫
C(x, y)dxdy

)2
= − 1

12 −
1
2

∫∫
xC(x, y)dxdy + 1

2

∫∫∫
C1(x1, y1)C(x1, y2)dx1dy1dy2

+1
2

∫∫
C(x, y)dxdy − E(A1A2),

(3.48)

and

1
n

∑n
i=1 V2,iV3,i

p→ − 1
12
− 1

2

∫∫
yC(x, y)dxdy + 1

2

∫∫∫
C2(x1, y1)C(x2, y1)dx1dy1dy2

+1
2

∫∫
C(x, y)dxdy − E(A1A3).

(3.49)

Hence, it follows from (3.35)–(3.37), (3.40)–(3.49) that

1

n

n∑
i=1

(V1,i + V2,i + V3,i)
2

=
1

n

n∑
i=1

(V 2
1,i + V 2

2,i + V 2
3,i + 2V1,iV2,i + 2V1,iV3,i + 2V2,iV3,i)

p→ E(A2
1) + E(A2

2) + E(A2
3)− 2E(A1A2)− 2E(A1A3) + E(A2A3),

i.e.,

1

n

n∑
i=1

(Zi − ρs)2 p→ σ2.
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Proof of Theorem 3.3.1. Since V1,i, V2,i and V3,i defined in the proof of Lemma

1 are uniformly bounded for i = 1, · · · , n, we have sup1≤i≤n |Zi| is bounded. Hence,

using the standard arguments in the empirical likelihood method (see Chapter 11 of

Owen [73]), Lemmas 3.3.2 and 3.3.3, we obtain that

−2 logL(ρs) =
{
∑n

i=1(Zi − ρs)}2∑n
i=1(Zi − ρs)2

+ op(1)
d→ χ2(1).

3.4 Interval Estimation for Parametric Copulas

For fitting a parametric copula to multivariate data, a popular way is to employ

the so-called pseudo maximum likelihood estimation proposed by Genest, Ghoudi

and Rivest [42]. Although interval estimation can be obtained via estimating the

asymptotic covariance of the pseudo maximum likelihood estimation, we propose a

jackknife empirical likelihood method to construct confidence regions for the parame-

ters without estimating any additional quantities such as the asymptotic covariance.

A simulation study shows the advantages of the new method in case of strong depen-

dence or having more than one parameter involved.

3.4.1 Introduction

Let X1 = (X1,1, · · · , X1,d)
T , · · · ,Xn = (Xn,1, · · · , Xn,d)

T be independent random

vectors with common distribution function F and continuous marginal distributions

F1, · · · , Fd. Then the copula of X1 is defined as

C(x1, · · · , xd) = F (F−
1 (x1), · · · , F−

d (xd)) (3.50)

for 0 ≤ x1, · · · , xd ≤ 1, where F−
j denotes the inverse of Fj. Since the copula is inde-

pendent of marginals, it becomes a more or less standard tool in modeling dependence

in risk management. Many research papers and review papers have appeared in the

literature with particular applications in insurance, finance and risk management; see

references in Haug, Klüppelberg and Peng [44].
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For fitting a family of parametric copulas {C(·; θ) : θ ∈ Θ ⊂ Rq} to a data set,

a popular semi-parametric estimation is the so-called pseudo maximum likelihood

estimation proposed by Genest, Ghoudi and Rivest [42]. That is, θ̂ = arg max L̄(θ),

where L̄(θ) is the pseudo likelihood function for θ defined as

L̄(θ) =
n∏
i=1

c(F̂1(Xi,1), · · · , F̂d(Xi,d); θ), (3.51)

where c(·; θ) denotes the density function of the parametric copula family C(·; θ), and

F̂j(x) = 1
n+1

∑n
i=1 I(Xi,j ≤ x) for j = 1, · · · , d. Alternatively, the pseudo maximum

likelihood estimator can be defined as a root of the score equations

n∑
i=1

l(F̂1(Xi,1), · · · , F̂d(Xi,d); θ) = 0, (3.52)

where l(x; θ) = (l1(x; θ), · · · , lq(x; θ)) and lj(x; θ) = ∂
∂θj

log c(x; θ). Since lj((x1, · · · , xd); θ)

may be infinity when one of x′is is one, we use F̂j(x) as the empirical distribution func-

tion in this section instead of 1
n

∑n
i=1 I(Xi,j ≤ x) to ensure max1≤i≤n F̂j(Xi,j) < 1. The

asymptotic distribution of the above pseudo maximum likelihood estimator and a con-

sistent estimator for the asymptotic variance are given in Genest, Ghoudi and Rivest

[42]. Since the asymptotic covariance of the pseudo maximum likelihood estimator

is complicated and involves the contribution from both the copula and marginals, it

is of importance to seek a more efficient way to construct confidence regions for the

parameters θ without estimating the asymptotic covariance.

In this section, we investigate the possibility of employing empirical likelihood

methods. A key step in applying the empirical likelihood method is to formulate the

nonparametric likelihood function. This is commonly done via estimating equations.

Since the pseudo maximum likelihood estimator is a solution to the score equations

(3.52), one may apply the method in Qin and Lawless [82] to construct confidence

regions for β by defining the empirical likelihood function as

L1(θ) = sup{
∏n

i=1(npi) : p1 ≥ 0, · · · , pn ≥ 0,
∑n

i=1 pi = 1,∑n
i=1 pil(F̂1(Xi,1), · · · , F̂d(Xi,d); θ) = 0}.
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Unfortunately, this likelihood function can not catch the variances of F̂ ′
js and thus

Wilks’ Theorem fails, i.e., −2 logL1(θ) does not converge in distribution to a chi-

square limit, due to the nonlinearity of l(·; θ). A common way to deal with nonlinear

functionals is to linearize it before employing the empirical likelihood method; see

Chen, Peng and Zhao [19] and Molanes-Lopez, Van Keilegom and Veraverbeke [66] for

constructing confidence intervals for copula at a particular point. However, it remains

unknown on how to linearize the score questions (3.52). In this section, we apply the

jackknife empirical likelihood method to construct confidence intervals/regions for a

parametric copula. When the copula is estimated nonparametrically, Peng, Qi and

Van Keilegom [75] proposed a smoothed jackknife empirical likelihood method to

construct confidence intervals for a copula at a fixed point.

We organize this section as follows. Section 3.4.2 presents the methodology and

main results. A simulation study and a real data analysis are given in Section 3.4.3.

All proofs are put in Section 3.4.4.

3.4.2 Methodology

In order to formulate an empirical likelihood function with F̂ ′
js taken into account,

we consider the estimators 1
n

∑n
i=1 l(F̂1(Xi,1), · · · , F̂d(Xi,d); θ) and follow the idea in

Jing, Yuan and Zhou [47] to construct a jackknife sample first and then apply the

empirical likelihood method to the jackknife sample. Since the considered estimators

are not U-statistics, we formulate the jackknife sample in a way different from that

in Jing, Yuan and Zhou [47]. The details are as follows.

Like the definition of F̂j(x) in the introduction, we define F̂j,−i(x) = 1
n

∑n
k=1,k 6=i I(Xk,j ≤

x) instead of 1
n−1

∑n
k=1,k 6=i I(Xk,j ≤ x) for j = 1, · · · , d and i = 1, · · · , n. Further we

formulate the jackknife sample as {Zi(θ) = (Zi,1(θ), · · · , Zi,q(θ))T}ni=1, where

Zi,j(θ) =
n∑
k=1

lj(F̂1(Xk,1), · · · , F̂d(Xk,d); θ)−
n∑

k=1,k 6=i

lj(F̂1,−i(Xk,1), · · · , F̂d,−i(Xk,d); θ)

for i = 1, · · · , n and j = 1, · · · , q. Based on this jackknife sample, we define the
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jackknife empirical likelihood function as

L(θ) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZi(θ) = 0}.

By the Lagrange multiplier technique, i.e., maximizing
∑n

i=1 log(npi) + a(
∑n

i=1 pi −

1)+bT
∑n

i=1 piZi(θ) with respect to p1, · · · , pn, a, b, we have pi = n−1{1+λTZi(θ)}−1,

−2 logL(θ) = 2
n∑
i=1

log{1 + λTZi(θ)},

where λ = (λ1(θ), · · · , λq(θ))T satisfies

n∑
i=1

Zi(θ)

1 + λTZi(θ)
= 0. (3.53)

See Owen [71] for more details.

Before showing that Wilks’ Theorem holds for the above jackknife empirical like-

lihood method, we list some regularity conditions. Throughout we use θ0 to denote

the true value of θ and define r(u) = u(1− u).

A1) There exist some constants 0 < α1 < 1/2 and M1 > 0 such that, uniformly for

0 < u1, · · · , ud < 1,

|lj(u1, · · · , ud; θ0)| ≤M1

d∏
i=1

r(ui)
−α1 ,

|l(s)j (u1, · · · , ud; θ0)| := | ∂
∂us

lj(u1, · · · , ud; θ0)| ≤M1r(us)
−1

d∏
i=1

r(ui)
−α1 ,

|l(sm)
j (u1, · · · , ud; θ0)| := | ∂2

∂us∂um
lj(u1, · · · , ud; θ0)| ≤M1r(us)−1r(um)−1

d∏
i=1

r(ui)−α1 ,

and

E[l2j (F1(X1,1), · · · , Fd(X1,d); θ0)] ≤M1

for j = 1, · · · , q and s,m = 1, · · · , d.
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A2) For a given 0 < α2 < 1/2, there exist some constants 0 < α3 < 1/2 and M2 > 0

such that, uniformly for 0 < u1, · · · , ud < 1∫
· · ·
∫

[0,1]d−1

d∏
i=1

r(ui)
−α2c(u1, · · · , ud; θ0) du1 · · · dus−1dus+1 · · · dud ≤M2r(us)

−α3

for s = 1, · · · , d, and∫
· · ·
∫

[0,1]d−2

d∏
i=1

r(ui)
−α2c(u1, · · · , ud; θ0) du1 · · · dus−1dus+1 · · · dum−1dum+1 · · · dud

≤M2r(us)
−α3r(um)−α3

for 1 ≤ s < m ≤ d.

Remark 3.4.1. Commonly used copulas such as Clayton, Frank, Gumbel, normal and

t copulas satisfy A1) and A2).

Theorem 3.4.1. Under conditions A1) and A2), we have

−2 logL(θ0)
d→ χ2(q) as n→∞.

Based on the above theorem, an empirical likelihood confidence interval/region

for θ0 with level ξ is {θ : −2 logL(θ) ≤ χ2
q,ξ}, where χ2

q,ξ is the ξ-th quantile of a

chi-square distribution with q degrees of freedom.

3.4.3 Simulation study and data analysis

Simulation study. In this subsection, we examine the finite behavior of the proposed

jackknife empirical likelihood method and compare it with the normal approximation

method.

We draw 10, 000 random samples with size n = 300 from the Clayton copula

C(u1, · · · , ud; θ) = (1−d+u−θ1 + · · ·+u−θd )−1/θ, bivariate normal copula C(u1, u2; θ) =

Φθ(Φ
−1(u1),Φ

−1(u2)), where Φ denotes the standard normal distribution and Φθ de-

notes the standard bivariate normal distribution with correlation θ, and bivariate

t-copula with θ = (ρ, ν), where ρ ∈ (−1, 1) and ν > 0.
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We employ the ’copula’ package in R to calculate the pseudo maximum likelihood

estimator and its asymptotic variance so as to construct a confidence interval/region

for θ, denoted by NAM. We also denote the proposed jackknife empirical likelihood

method by JELM. For calculating the score equations of the bivariate t-copula, we use

the formulas in Dakovic and Czado [23] with some typos corrected. More specifically,

i) the integrals in (7) and (8) have to be divided by 2; ii) x2 in (8) is x2
i ; iii) the term

ν+2
2ν

in the formula for ∂l
∂ν

(u1, u2) after (11) is ν−2
2ν

. Note that equations (7), (8) and

(11) mean those in Dakovic and Czado [23].

In Tables 3.7–3.9 we report coverage probabilities for these two methods with

levels 0.9 and 0.95. Note that for the t-copula, the ’copula’ package in R does not

provide asymptotic covariance. Hence we only report the coverage probabilities for

the proposed jackknife empirical likelihood method in this case. From these tables, we

observe that (i) the proposed jackknife empirical likelihood method works better than

the normal approximation methods for large θ in the Clayton and normal copula (i.e.,

strong dependence); (ii) results for the cases of d = 4, θ = 10, 15 in Table 1 indicate

that the asymptotic variance for the Clayton copula given in the ’copula’ package may

be problematic when the dimension is large; (iii) the proposed jackknife empirical

likelihood method performs well for t-copulas, where the asymptotic variance in the

copula package is not available.

Data analysis. We apply the proposed method to an insurance company data on

losses and ALAEs. This particular data set has been analyzed by Frees and Valdez

[39], Klugman and Parsa [58], Dupuis and Jones [30], and Peng [74]. Like Klugman

and Parsa [58], we fit the Frank copula

C(u, v;α) = − 1

α
log{1 +

(e−αu − 1)(e−αv − 1)

e−α − 1
}.

Using the copula package in R, we find the pseudo maximum likelihood estimator for

α is 2.992 and the confidence intervals based on the normal approximation method
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Table 3.7: Empirical coverage probabilities are reported for Clayton copulas with
dimension d = 2, 4.

(d, θ) JELM NAM JELM NAM
Level 0.9 Level 0.9 Level 0.95 Level 0.95

(2,0.2) 0.8846 0.8875 0.9363 0.9417
(2,1) 0.8902 0.8950 0.9430 0.9448
(2,10) 0.9114 0.9162 0.9563 0.9566
(2,15) 0.9184 0.9160 0.9628 0.9582
(4,0.2) 0.8750 0.8734 0.9336 0.9331
(4,1) 0.8767 0.8791 0.9295 0.9294
(4,10) 0.9167 0.9418 0.9573 0.9703
(4,15) 0.9211 0.9519 0.9604 0.9781

Table 3.8: Empirical coverage probabilities are reported for the bivariate normal
copula.

θ JELM NAM JELM NAM
Level 0.9 Level 0.9 Level 0.95 Level 0.95

0.2 0.8847 0.8851 0.9438 0.9434
0.5 0.8864 0.8750 0.9411 0.9314
0.8 0.8880 0.8818 0.9393 0.9331

Table 3.9: Empirical coverage probabilities are reported for the bivariate t copula.

θ = (ρ, ν) JELM JELM
Level 0.9 Level 0.95

(0.2, 3) 0.8853 0.9404
(0.5,3) 0.8874 0.9385
(0.8,3) 0.8945 0.9476
(0.2,8) 0.8808 0.9352
(0.5,8) 0.8861 0.9412
(0.8,8) 0.8878 0.9415
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are (2.694, 3.290) and (2.637, 3.348) for levels 90% and 95%, respectively. The pro-

posed jackknife empirical likelihood intervals are calculated to be (2.702, 3.292) and

(2.653, 3.352) for levels 90% and 95%, respectively, which are slightly skewed to the

right than the normal approximation based intervals.

3.4.4 Proofs

Lemma 3.4.2. Under conditions of Theorem 3.4.1, we have

1√
n

n∑
i=1

Zi(θ0)
d→ N(0,Σ) as n→∞,

where Σ = (σij)1≤i,j≤q,

σij = E

[(
li(T1; θ0) +

d∑
s=1

W (i, s)

)(
lj(T1; θ0) +

d∑
s=1

W (j, s)

)]
<∞,

T1 = (F1(X1,1), · · · , Fd(X1,d))
T and

W (i, s) =

∫ 1

0

· · ·
∫ 1

0

l
(s)
i (u1, · · · , ud; θ0)(I(Fs(X1,s) ≤ us)−us)c(u1, · · · , ud; θ0) du1 · · · dud.

Proof. We denote Tk = (F1(Xk,1), · · · , Fd(Xk,d))
T , T̂k = (F̂1(Xk,1), · · · , F̂d(Xk,d))

T

and T̂k,−i = (F̂1,−i(Xk,1), · · · , F̂d,−i(Xk,d))
T for i, k = 1, · · · , n. Write

Zi,j(θ0)

= lj(T̂k; θ0) +
n∑

k=1,k 6=i

{lj(T̂k; θ0)− lj(T̂k,−i; θ0)}

= lj(T̂k; θ0) +
n∑

k=1,k 6=i

d∑
s=1

l
(s)
j (T̂k; θ0){F̂s(Xk,s)− F̂s,−i(Xk,s)}

+
1

2

n∑
k=1,k 6=i

d∑
s=1

d∑
t=1

l
(st)
j (Yk,i; θ0){F̂s(Xk,s)− F̂s,−i(Xk,s)}{F̂t(Xk,t)− F̂t,−i(Xk,t)}

= lj(T̂k; θ0) +
1

n

n∑
k=1,k 6=i

d∑
s=1

l
(s)
j (T̂k; θ0){I(Xi,s ≤ Xk,s)− F̂s(Xk,s)}

+
1

2n2

n∑
k=1,k 6=i

d∑
s=1

d∑
t=1

l
(st)
j (Yk,i; θ0)× {I(Xi,s ≤ Xk,s)− F̂s(Xk,s)}

×{I(Xi,t ≤ Xk,t)− F̂t(Xk,t)}

=: I1(i, j) + I2(i, j) + I3(i, j), (3.54)
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where

Yk,i = βkT̂k + (1− βk)T̂k,−i

and βk ∈ [0, 1] depending on i and j. Since

sup
1≤i≤n

Fs(Xi,s)

F̂s(Xi,s)
= Op(1) and sup

1≤i≤n

1− Fs(Xi,s)

1− F̂s(Xi,s)
= Op(1) (3.55)

(see (4) in Page 415 of Shorack and Wellner [94]), it follows from A1) that

1√
n

∑n
i=1 I2(i, j)

= n−3/2
∑n

i=1

∑n
k=1

∑d
s=1 l

(s)
j (T̂k; θ0){I(Xi,s ≤ Xk,s)− F̂s(Xk,s)}

−n−3/2
∑n

i=1

∑d
s=1 l

(s)
j (T̂i; θ0){1− F̂s(Xi,s)}

= −n−3/2
∑n

k=1

∑d
s=1 l

(s)
j (T̂k; θ0){1− 2F̂s(Xk,s)}

= Op(n
−3/2

∑n
i=1

∑d
s=1 r(F̂s(Xi,s))

−1
∏d

t=1 r(F̂t(Xi,t))
−α1)

= Op(n
−3/2

∑n
i=1

∑d
s=1 r(Fs(Xi,s))

−1
∏d

t=1 r(Ft(Xi,t))
−α1).

(3.56)

By A2) and choosing δ > 1 and δα3 < 1/2, where α3 is given in A2), we have for any

ε > 0

P(n−3/2
∑n

i=1 r(Fs(Xi,s))
−1
∏d

t=1 r(Ft(Xi,t))
−α1 > ε)

≤ P(n−3/2
∑n

i=1 I(n
−δ ≤ Fs(Xi,s) ≤ 1− n−δ)r(Fs(Xi,s))

−1
∏d

t=1 r(Ft(Xi,t))
−α1 > ε)

+P(min1≤i≤n Fs(Xi,s) < n−δ) + P(max1≤i≤n Fs(Xi,s) > 1− n−δ)

≤ (n3/2ε)−1
∑n

i=1 E[I(n−δ ≤ Fs(Xi,s) ≤ 1− n−δ)r(Fs(Xi,s))
−1
∏d

t=1 r(Ft(Xi,t))
−α1 ]

+o(1)

≤ M2n
−1/2ε−1E[I(n−δ ≤ Fs(X1,s) ≤ 1− n−δ)r(Fs(X1,s))

−1−α3 ] + o(1)

≤ M2n
−1/2+δα3ε−1 + o(1)

= o(1).

(3.57)

Therefore, it follows from (3.56) and (3.57) that

1√
n

n∑
i=1

I2(i, j) = op(1) for j = 1, · · · , q. (3.58)
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By A1), (3.55) and noting that

∑n
i=1(I(Xi,s ≤ Xk,s)− F̂s(Xk,s))

2

= (n+ 1)F̂s(Xk,s)(1− F̂s(Xk,s))− F̂ 2
s (Xk,s)

≤ (n+ 1)r(F̂s(Xk,s)),

we have

|n−5/2
∑n

i=1

∑n
k=1,k 6=i l

(st)
j (Yk,i; θ0)(I(Xi,s ≤ Xk,s)− F̂s(Xk,s))

×(I(Xi,t ≤ Xk,t)− F̂t(Xk,t))|

= Op(n
−5/2

∑n
i=1

∑n
k=1 r(Fs(Xk,s))

−1r(Ft(Xk,t))
−1
∏d

m=1 r(Fm(Xk,m))−α1

×{(I(Xi,s ≤ Xk,s)− F̂s(Xk,s))
2 + (I(Xi,t ≤ Xk,t)− F̂t(Xk,t))

2})

= Op(n
−5/2

∑n
k=1 r(Fs(Xk,s))

−1r(Ft(Xk,t))
−1
∏d

m=1 r(Fm(Xk,m))−α1

×(n+ 1){r(F̂s(Xk,s)) + r(−F̂t(Xk,t))})

= Op(n
−3/2

∑n
k=1 r(Ft(Xk,t))

−1
∏d

m=1 r(Fm(Xk,m))−α1)

+Op(n
−3/2

∑n
k=1 r(Fs(Xk,s))

−1
∏d

m=1 r(Fm(Xk,m))−α1)

(3.59)

for s, t = 1, · · · , q. Like the proof of (3.57), we have

n−3/2

n∑
k=1

r(Ft(Xk,t))
−1

d∏
m=1

r(Fm(Xk,m))−α1 = op(1)

for t = 1, · · · , d, i.e.,

1√
n

n∑
i=1

I3(i, j) = op(1) for j = 1, · · · , q. (3.60)

Write

I1(i, j) = lj(Ti; θ0) +
∑d

s=1 l
(s)
j (Ti; θ0){F̂s(Xi,s)− Fs(Xi,s)}

+1
2

∑d
s=1

∑d
t=1 l

(st)
j (Y∗

i ; θ0){F̂s(Xi,s)− Fs(Xi,s)}{F̂t(Xi,t)− Ft(Xi,t)}

=: II1(i, j) + II2(i, j) + II3(i, j),

where

Y∗
i = β∗i T̂i + (1− β∗i )Ti

and β∗i ∈ [0, 1].
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Since

max
1≤i≤n

|
√
n{F̂s(Xi,s)− Fs(Xi,s)}

F
1/2
s (Xi,s)(1− Fs(Xi,s))1/2

| = Op(log n) (3.61)

for s = 1, · · · , d (see Mason [64]), using the same arguments in proving (3.57), we can

show that

1√
n

n∑
i=1

II3(i, j) = op(1) for j = 1, · · · , q. (3.62)

It is easy to check that

E({F̂s,−i(Xi,s)− n−1
n
Fs(Xi,s)}{F̂s,−k(Xk,s)− n−1

n
Fs(Xk,s)}|Xi, Xk)

= n−2
n2 {Fs(Xi,s ∧Xk,s)− Fs(Xi,s)Fs(Xk,s)}

(3.63)

for i 6= k. Put

W1(i, j, s) = l
(s)
j (Ti; θ0){F̂s(Xi,s)− Fs(Xi,s)},

W2(i, j, s) = l
(s)
j (Ti; θ0){F̂s,−i(Xi,s)−

n− 1

n
Fs(Xi,s)}

and

W3(i, j, s) =

∫ 1

0

· · ·
∫ 1

0

l
(s)
j (u1, · · · , ud; θ0){I(Fs(Xi,s) ≤ us)− us} ×

c(u1, · · · , ud; θ0) du1 · · · dud.

Since

W1(i, j, s) =
n

n+ 1
W2(i, j, s) + l

(s)
j (Ti; θ0){

1

n+ 1
− 2

n+ 1
Fs(Xi,s)},

it follows from the same arguments in proving (3.57) that

1√
n

n∑
i=1

W1(i, j, s) =
1√
n

n∑
i=1

W2(i, j, s) + op(1) (3.64)

for j = 1, · · · , q and s = 1, · · · , d. By (3.61), we have

max1≤i≤n |
√
n{F̂s,−i(Xi,s)−n−1

n
Fs(Xi,s)}

F
1/2
s (Xi,s)(1−Fs(Xi,s))1/2

|

≤ max1≤i≤n
n+1
n
|
√
n{F̂s(Xi,s)−Fs(Xi,s)}

F
1/2
s (Xi,s)(1−Fs(Xi,s))1/2

|

+ max1≤i≤n{
√
nF

1/2
s (Xi,s)(1− Fs(Xi,s))

1/2}−1

= Op(log n)

(3.65)
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for s = 1, · · · , d. Using (3.65) and the same arguments in proving (3.57), we have

1

n

n∑
i=1

W 2
2 (i, j, s) = op(1) for j = 1, · · · , q, s = 1, · · · , d. (3.66)

By (3.63) and (3.66), we have

E{ 1
n

∑n
i,k=1,i6=kW2(i, j, s)W2(k, j, s)}

= E(E{ 1
n

∑n
i,k=1,i6=kW2(i, j, s)W2(k, j, s)|Xi, Xk})

= E{n−2
n3

∑n
i,k=1,i6=k l

(s)
j (Ti; θ0)l

(s)
j (Tk; θ0)(Fs(Xi,s) ∧ Fs(Xk,s)− Fs(Xi,s)Fs(Xk,s))}

=
∫ 1

0
· · ·
∫ 1

0
l
(s)
j (u1, · · · , ud; θ0)l

(s)
j (v1, · · · , vd; θ0)(us ∧ vs − usvs)×

c(u1, · · · , ud; θ0)c(v1, · · · , vd; θ) du1 · · · duddv1 · · · dvd + o(1),

(3.67)

E{ 1
n

∑n
i=1

∑n
k=1W2(i, j, s)W3(k, j, s)}

= E(E{ 1
n

∑n
i=1

∑n
k=1W2(i, j, s)W3(k, j, s)|Xi, Xk})

= E(E{ 1
n

∑n
i,k=1,i6=kW2(i, j, s)W3(k, j, s)|Xi, Xk})

= E{ 1
n2

∑n
i,k=1,i6=k l

(s)
j (Ti; θ0)(I(Xk,s ≤ Xi,s)− Fs(Xi,s))W3(k, j, s)}

=
∫ 1

0
· · ·
∫ 1

0
l
(s)
j (u1, · · · , ud; θ0)l

(s)
j (v1, · · · , vd; θ0)(us ∧ vs − usvs)×

c(u1, · · · , ud; θ0)c(v1, · · · , vd; θ0) du1 · · · duddv1 · · · dvd + o(1)

(3.68)

and

E{ 1
n

∑n
i=1

∑n
k=1W3(i, j, s)W3(k, j, s)}

= E{ 1
n

∑n
i=1W

2
3 (i, j, s)}

=
∫ 1

0
· · ·
∫ 1

0
l
(s)
j (u1, · · · , ud; θ0)l

(s)
j (v1, · · · , vd; θ0)(us ∧ vs − usvs)×

c(u1, · · · , ud; θ0)c(v1, · · · , vd; θ0) du1 · · · duddv1 · · · dvd

(3.69)

for j = 1, · · · , q and s = 1, · · · , d. Hence, it follows from (3.66)–(3.69) that for any
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ε > 0

P(| 1√
n

∑n
i=1(W2(i, j, s)−W3(i, j, s))| > ε)

= P( 1
n

∑n
i=1W

2
2 (i, j, s) + 1

n

∑n
i,k=1,i6=kW2(i, j, s)W2(k, j, s)

− 2
n

∑n
i=1

∑n
k=1W2(i, j, s)W3(k, j, s) + 1

n

∑n
i=1

∑n
k=1W3(i, j, s)W3(k, j, s) > ε2)

≤ P( 1
n

∑n
i=1W

2
2 (i, j, s) > ε2/2)

+ 2
ε2

E{ 1
n

∑n
i,k=1,i6=kW2(i, j, s)W2(k, j, s)− 2

n

∑n
i=1

∑n
k=1W2(i, j, s)W3(k, j, s)

+ 1
n

∑n
i=1

∑n
k=1W3(i, j, s)W3(k, j, s)}

= o(1).

(3.70)

By (3.62), (3.64) and (3.70), we have

1√
n

∑n
i=1 I1(i, j)

= 1√
n

∑n
i=1 lj(Ti; θ0) + 1√

n

∑n
i=1

∑d
s=1

∫ 1

0
· · ·
∫ 1

0
l
(s)
j (u1, · · · , ud; θ0)

×(I(Fs(Xi,s) ≤ us)− us)c(u1, · · · , ud; θ0) du1 · · · dud + op(1)

(3.71)

for j = 1, · · · , q. Note that by A1) and A2),

E
[∫ 1

0

· · ·
∫ 1

0

l
(s)
j (u1, · · · , ud; θ0)(I(Fs(Xi,s) ≤ us)− us)c(u1, · · · , ud; θ0) du1 · · · dud

]2

=

∫ 1

0

· · ·
∫ 1

0

l
(s)
j (u1, · · · , ud; θ0)c(u1, · · · , ud; θ0)l

(s)
j (v1, · · · , vd; θ0)c(v1, · · · , vd; θ0)

×(min{us, vs} − usvs) du1 · · · duddv1 · · · dvd

< ∞.

Hence, the lemma follows from (3.58), (3.60), (3.71) and the central limit theorem.

Lemma 3.4.3. Under conditions of Theorem 3.4.1, we have

1

n

n∑
i=1

Zi(θ0)Z
T
i (θ0)

p→ Σ as n→∞,

where Σ is defined in Lemma 3.4.2.

Proof. Using the same notation in the proof of Lemma 3.4.2, we can show that for

fixed j,m = 1, · · · , q,

1

n

n∑
i=1

I1(i, j)I1(i,m) = E[lj(T1; θ0)lm(T1; θ0)] + op(1),
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1

n

n∑
i=1

I3(i, j){I1(i,m) + I2(i,m)} = op(1),
1

n

n∑
i=1

I3(i, j)I3(i,m) = op(1),

1

n

n∑
i=1

I1(i, j)I2(i,m) = E

[
lj(T1; θ0)

d∑
s=1

W (m, s)

]
+ op(1),

and

1

n

n∑
i=1

I2(i, j)I2(i,m) = E

[
d∑
s=1

d∑
t=1

W (j, s)W (m, t)

]
+ op(1),

which implies that

1

n

n∑
i=1

Zi,j(θ0)Zi,m(θ0)
p→ σjm for j,m = 1, · · · , q,

i.e., the lemma holds.

Lemma 3.4.4. Under conditions of Theorem 3.4.1, we have for j = 1, · · · , q,

max
1≤i≤n

|Zi,j(θ0)| = op(n
1/2).

Proof. We shall use the same notation in the proof of Lemma 3.4.2. For any M > 0,

we have

P
(

max
1≤i≤n

|I2(i, j)| ≥ n1/2M

)
≤ P

(
max
1≤i≤n

1

n

n∑
k=1,k 6=i

d∑
s=1

|l(s)j (T̂k; θ0)| ≥ n1/2M

)

≤ P

(
1

n

n∑
k=1

d∑
s=1

|l(s)j (T̂k; θ0)| ≥ n1/2M

)
.

Hence by the same arguments in (3.56) and (3.57) we have

n−3/2

n∑
k=1

d∑
s=1

|l(s)j (T̂k; θ0)| = op(1),

i.e., P
(
max1≤i≤n |I2(i, j)| ≥ n1/2M

)
= o(1), which implies that

max
1≤i≤n

|I2(i, j)| = op(n
1/2). (3.72)

Note that in (3.59) and (3.60), we actually showed

1√
n

n∑
i=1

|I3(i, j)| = op(1),
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which implies

max
1≤i≤n

|I3(i, j)| = op(n
1/2). (3.73)

Similarly, we have

max
1≤i≤n

|II2(i, j)| = op(n
1/2) and max

1≤i≤n
|II3(i, j)| = op(n

1/2). (3.74)

Since E[l2j (T1; θ0)] <∞, we have nP(l2j (T1; θ0) ≥ n) = o(1), i.e.,

max
1≤i≤n

|II1(i, j)| = op(n
1/2). (3.75)

Hence the lemma follows from (3.72) to (3.75).

Proof of Theorem 3.4.1. It follows from Lemmas 3.4.2-Lemma 3.4.4 and the

standard arguments in the empirical likelihood method for a mean vector.
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CHAPTER IV

COMPLETELY MIXABLE DISTRIBUTIONS AND THEIR

APPLICATIONS IN RISK MANAGEMENT

In this chapter, we introduce the theory of completely mixable distributions. We give

the definition and study the properties of CM distributions. We prove a few classes of

distributions are CM. The idea of CM distributions can be used to provide valuable

implications in variance minimization, multivariate dependence and risk management.

The content of this chapter is mainly based on the following papers and preprints.

1. Wang, R., Peng, L. and Yang, J. (2012). Bounds for the sum of dependent risks

and worst Value-at-Risk with monotone marginal densities. Preprint.

2. Puccetti, G., Wang, B. and Wang, R. (2012). Advances in complete mixability.

Journal of Applied Probability, to appear.

3. Wang, B and Wang, R. (2011). The complete mixability and convex minimiza-

tion problems for monotone marginal distributions. Journal of Multivariate

Analysis 102, 1344-1360.

4.1 Introduction

Rüschendorf and Uckelmann [87] investigated random variables with constant sums

and associated it with variance minimization problems in Fréchet class. In this chap-

ter, a distribution function F is called n-completely mixable (n-CM) if there exist n

random variables X1, . . . , Xn identically distributed as F having constant sum, that

is satisfying

X1 + · · ·+Xn = nµ.
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This property was studied by Gaffke and Rüschendorf [41] in the case of uniform

distributions. The case of distributions with symmetric and unimodal density was

studied for n = 3 by Knott and Smith [60], [61] and for the general case n ≥ 2 by

Rüschendorf and Uckelmann [87] using a different method.

The concept of complete mixability is related to some Fréchet class optimization

problems in the theory of optimal couplings. Let X = (X1, · · · , Xn), S = X1+· · ·+Xn

and define the homogenous Fréchet class as in Chapter I

Fn(F1, · · · , Fn) = {X : Xi ∼ Fi, i = 1, · · · , n}.

Question A: the expectation of a convex function. Find

inf
X∈Fn(F1,··· ,Fn)

E[f (S)] (4.1)

for f being a convex function.

Question B: the distribution of the total risk. Find bounds on the distribution

of S:

m+(s) = inf
X∈Fn(F1,··· ,Fn)

P(S < s); (4.2)

M+(s) = sup
X∈Fn(F1,··· ,Fn)

P(S < s). (4.3)

As introduced in Chapter I, Questions A and B have relevant applications in

quantitative risk management, where they are needed to assess the aggregate risk of

a portfolio of losses for regulatory issues. Later we will review the literature on these

problems in Section 4.5 and Section 4.6. For more details on the motivation of these

problems within quantitative risk management, we refer to Embrechts and Puccetti

[37].

The rest of this chapter is organized as follows. We give the formal definition and

basic properties of CM distributions in Section 4.2. Completeness and Decomposition

theorems are given in Section 4.3. We prove three classes of distributions are CM in

Section 4.4. Section 4.5 addresses Question A and Section 4.6 addresses Question B,
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both using the idea of CM distributions. Some technical proofs are put in Section 4.7.

Throughout this chapter, we identify probability measures with the corresponding

distribution functions.

4.2 Definition and Basic Properties

In this thesis, we call the marginal distribution of random variables with a constant

sum a completely mixable distribution, as in the following definition.

Definition 4.2.1. A distribution function F on R is called n-completely mixable (n-

CM) if there exist n random variables X1, . . . , Xn identically distributed as F such

that

P (X1 + · · ·+Xn = nµ) = 1, (4.4)

for some µ ∈ R. Any such µ is called a center of F and any vector (X1, . . . , Xn)

satisfying (4.4) with Xi ∼ F, 1 ≤ i ≤ n, is called an n-complete mix.

Sometimes we say a distribution is CM omitting the integer n which should be

clear from the context. We denote by Mn(µ) the set of all n-CM distributions with

center µ, and by Mn =
⋃
µ∈RMn(µ) the set of all n-CM distributions on R.

Proposition 4.2.1. (Basic properties.) For simplicity, in the following we let FX

be the distribution of X for any random variable X.

(1) (Invariance under affine transformations) Suppose FX ∈ Mn(µ), then FaX+b ∈

Mn(aµ+ b) for any constants a, b.

(2) (Center of the complete mixability) Suppose FX ∈ Mn(µ) and follows the weak

law of large numbers (WLLN), then µ is unique. If E(X) exists, then µ = E(X).

(3) (Additivity 1: distribution-wise) Suppose F,G ∈Mn(µ). Then for any λ ∈ [0, 1],

λF + (1− λ)G ∈Mn(µ).
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(4) (Additivity 2: index-wise) Suppose F ∈ Mn, G ∈ Mk, then n
n+k

F + k
n+k

G ∈

Mn+k. As a consequence, if F ∈Mn ∩Mk, then F ∈Mn+k.

(5) (Additivity 3: random-variable-wise) Suppose X and Y are independent, FX , FY ∈

Mn, then FX+Y ∈Mn.

(6) (Mean condition) Suppose the distribution FX ∈Mn(µ). Let a = sup{x : P(X ≤

x) = 0} and b = sup{x : P(X ≤ x) < 1}. If one of a and b is finite, then the

other one is finite, µ = E(X) and

a+
b− a

n
≤ µ ≤ b− b− a

n
. (4.5)

Proof.

(1) This follows immediately from the definition.

(2) Assume E(X) exists and (X1, · · · , Xn) is an n-complete mix with marginal dis-

tribution FX . Taking expectation on both sides of µ = 1
n
(X1 + · · ·+Xn) gives us

µ = E(X). Now suppose FX follows WLLN. We can take independent copies of

(X1, · · · , Xn), denoted by {(X1,i, · · · , Xn,i)}∞i=1, and take their average

nµ =
1

k

k∑
i=1

(X1,k + · · ·+Xn,k)

=
1

k

k∑
i=1

X1,k + · · ·+ 1

k

k∑
i=1

Xn,k

= nE(XI{|X1|≤k}) + op(1)

as k goes to infinity. Therefore E(XI{|X1|≤k}) → µ and µ is unique.

(3) Suppose X1+· · ·+Xn = nµ, Xi ∼ F and Y1+· · ·+Yn = nµ, Yi ∼ G, i = 1, · · · , n.

Let Z be a Bernoulli(λ) random variable independent of {Xi}ni=1 and {Yi}ni=1. Set

Zi = I{Z=1}Xi + I{Z=0}Yi, then Z1 + · · · + Zn = nµ and Zi ∼ λF + (1 − λ)G,

i = 1, · · · , n.
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(4) Suppose X1 + · · · + Xn = nµ, Xi ∼ F , i = 1, · · · , n and Y1 + · · · + Yk = kν,

Yj ∼ G, j = 1, · · · , k. Let σ be a random permutation uniformly distributed on

the set of all (n + k)-permutations and independent of X1, · · · , Xn, Y1, · · · , Yk.

Denote

(Z1, · · · , Zn+k) = σ(X1, · · · , Xn, Y1, · · · , Yk),

then Z1 + · · ·+ Zn+k = nµ+ kν and Zi ∼ n
n+k

F + k
n+k

G, i = 1, · · · , n+ k.

(5) Let Xi ∼ FX , Yi ∼ FY , i = 1, · · · , n such that X1 + · · ·+Xn and Y1 + · · ·+Yn are

constants. Denote X = (X1, · · · , Xn),Y = (Y1, · · · , Yn) and let FX and FY be the

distributions of X and Y. Let X̂ = (X̂1, · · · , X̂n) ∼ PX and Ŷ = (Ŷ1, · · · , Ŷn) ∼

PY be independent random vectors. Then we have X̂1+ · · ·+X̂n and Ŷ1+ · · ·+ Ŷn

are both constants. Denoting F̂ by the distribution of X̂ + Ŷ, the 1-marginal

distribution of F̂ is identical with FX+Y . Now Xi + Yi ∼ FX+Y , i = 1, · · · , n and∑n
i=1(Xi + Yi) is a constant. Hence FX+Y ∈Mn.

(6) Let Xi ∼ FX , i = 1, · · · , n, X1 + · · · + Xn = nµ and suppose a > −∞. Note

that if µ < a+ b−a
n

, then X1 = nµ− (X2 + · · ·+Xn) ≤ nµ− (n− 1)a < b, which

contradicts the fact that b = sup{x : P(X ≤ x) < 1}. Thus µ ≥ a + b−a
n

and

b < ∞. The inequality µ ≤ b − b−a
n

and the case given b < ∞ can be obtained

similarly.

The mean condition (4.5) is very important in the theory of CM distributions

as a necessary condition. Later we will see that the condition (4.5) is sufficient for

some classes of distributions. Also note that the uniqueness of the center of a CM

distribution is still unknown.

Proposition 4.2.2. (Examples.)

(i) F is 1-CM if and only if F is the distribution of a constant.
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(ii) F is 2-CM if and only if F is symmetric, i.e. X ∼ F and a−X ∼ F for some

constant a ∈ R.

(iii) The Binomial distribution B(n, p/q), p, q ∈ N, is q-CM.

(iv) The Gaussian and the Cauchy distributions are n-CM for n ≥ 2.

(v) The uniform distribution on the interval [a, b] is n-CM for any n ≥ 2 and a < b.

(vi) The Beta distribution with parameters α, β > 0 where (α − 1)(β − 1) ≤ 0 is

n-CM for 1
n
≤ α

α+β
≤ n−1

n
.

(vii) The Beta distribution Beta(α, β) with 1 ≤ α, β ≤ 2 is n-CM for n ≥ 3.

(viii) Any triangular distribution is n-CM for n ≥ 3.

Some of the examples come from theorems later in Section 4.4. We put the proof

in Section 4.7.

Before closing this section, we generalize the idea of CM distributions to the non-

homogenous case.

Definition 4.2.2. The univariate distribution functions F1, · · · , Fn are jointly mix-

able (JM) if there exist n random variables X1, · · · , Xn with distribution functions

F1, · · · , Fn respectively, such that

P (X1 + · · ·+Xn = nµ) = 1, (4.6)

holds for some C ∈ R.

Obviously, F1, · · · , Fn are JM distributions when F1 = · · · = Fn = F and F is

n-CM. The following proposition gives a necessary condition for JM distributions and

the condition is sufficient for n normal distributions. The proof is given in Section

4.7.

Proposition 4.2.3.
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1. Suppose F1, · · · , Fn are JM with finite variance σ2
1, · · · , σ2

n. Then

max
1≤i≤n

σi ≤
1

2

n∑
i=1

σi. (4.7)

2. Suppose Fi is N(µi, σ
2
i ) for i = 1, · · · , n. Then F1, · · · , Fn are JM if and only

if (4.7) holds.

4.3 Completeness and Decomposition Theorems

In this section, we show that any n-CM distribution can be obtained as the limit of

a convex combination of discrete n-CM distributions. First, we show that the sets

Mn(µ) andMn are complete under weak convergence, that is any n-CM distributions

can be seen as the the limit of n-CM discrete distributions.

Theorem 4.3.1. The following statements hold for weak convergence.

(a) The limit of a sequence of n-CM distribution functions (with center µ) is n-CM

(with center µ).

(b) Any n-CM distribution function with center µ is the limit of a sequence of discrete

n-CM distribution function with center µ.

(c) A distribution function is n-CM (with center µ) if and only if it is the limit of a

sequence of discrete n-CM distribution functions (with center µ).

Proof.

(a) Denote by F k, k ∈ N a sequence of n-CM distributions having limit F . Since

F k ∈Mn, for any k ∈ N it is possible to find Xk
1 , . . . , X

k
n such that Xk

i ∼ F k, 1 ≤

i ≤ n and

P (Xk
1 + · · ·+Xk

n = ck) = 1, (4.8)

for some ck ∈ R. As F k d→ F , there also exist n random variables X1, . . . , Xn

identically distributed as F for which Xk
i

d→ Xi, 1 ≤ i ≤ n and, therefore, such
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that

(Xk
1 + · · ·+Xk

n)
d→ (X1 + · · ·+Xn). (4.9)

Combining (4.8) and (4.9), we find that X1 + · · · + Xn = c = lim ck holds a.s..

Since Xi ∼ F, 1 ≤ i ≤ n, this implies that F is n-CM. If we have ck = nµ for all

k ∈ N, then c = nµ.

(b) Let X = (X1, . . . , Xn) be an n-complete mix on Rn with Xi ∼ F , 1 ≤ i ≤ n and

X1 + · · ·+Xn = nµ, a.s..

As X is supported on the set Sn(µ) = {x ∈ Rn :
∑n

i=1 xi = nµ} ⊂ Rn, we can find

a sequence F k, k ∈ N of discrete distributions on Sn(µ) converging weakly to the

distribution of X. The theorem follows by noting that F k
1 , the first marginal of

F k, is n-CM since F k is supported on Sn(µ) and the sequence F k
1 , k ∈ N converges

weakly to F .

(c) This is a corollary of points (a) and (b).

Now, we prove a decomposition theorem for n-CM distributions. In the following,

we call an n-discrete uniform distribution a uniform distribution on n points, that is

giving mass 1/n at each of the n points in its support.

Lemma 4.3.2. An n-discrete uniform distribution is n-CM.

Proof. Let F be an n-discrete uniform distribution on the points y1, . . . , yn. Let

X = (X1, . . . , Xn) be a random vector uniformly distributed on the n! vectors

(yπ(1), . . . , yπ(n)), π ∈ Pn,

where Pn is the set of all permutations of {1, . . . , n}. In the support of X, there are

exactly (n− 1)! vectors having the value yj as i-th component. Therefore, we have

P (Xi = yj) =
(n− 1)!

n!
= 1/n, 1 ≤ i, j ≤ n.
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As a consequence, X has marginal distributions identically distributed as F . Since∑n
i=1 yπ(i) is constant on π, X is an n-complete mix and F is n-CM.

We denote by MS
n(µ) the set of all n-discrete uniform distributions with mean

µ and by L
(
MS

n(µ)
)

be the set of all countable convex combinations of elements in

MS
n(µ), that is

L
(
MS

n(µ)
)

=

{
∞∑
k=1

akF
k;F k ∈MS

n(µ), ak ≥ 0,
∞∑
k=1

ak = 1

}
.

We show that any discrete n-CM distribution can be obtained as the countable convex

combination of n-discrete uniform distributions.

Theorem 4.3.3. The following statements hold:

(a) The countable convex combination of n-CM distribution functions with center µ

is n-CM with center µ.

(b) If F is discrete, then F ∈Mn(µ) if and only if F ∈ L
(
MS

n(µ)
)
.

(c) If F ∈ L
(
MS

n(µ)
)

with F =
∑

k∈N a
kF k, the joint distribution G of an n-complete

mix with marginals F is given by

G(x1, · · · , xn) =
∑
k∈N

ak
n!

n∏
i=1

[nF k(x[i])− i+ 1]+,

where x[i] is the i-th order statistics of {x1, · · · , xn}.

Proof.

(a) The statement for finite convex combinations follows by induction from Propo-

sition 4.2.1(3). Now let ak, k ∈ N be a sequence of nonnegative values with∑+∞
k=1 ak = 1 and F k ∈ Mn(µ), k ∈ N be a sequence of n-CM distributions

having center µ. W.l.o.g., we can assume a1 > 0 and define the new sequence

Gk =

∑k
i=1 aiF

i∑k
i=1 ai

, k ∈ N.
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Any Gk is the finite convex sum of n-CM distributions, thus it is n-CM. Since

Gk d→ G =
∑+∞

k=1 akF
k, we have that G is n-CM by point (a) in Theorem 4.3.1.

(b) The inclusion L
(
MS

n(µ)
)
⊂ Mn(µ), follows from (a). Then, it is sufficient to

showMn(µ) ⊂ L
(
MS

n(µ)
)
. Let X = (X1, . . . , Xn) be a complete mix with center

µ and discrete marginals identically distributed as F . Denoting by {xj, j ∈ A ⊂

N} the countable support of X, we have

F (s) =
1

n

n∑
i=1

P (Xi ≤ s) =
1

n

n∑
i=1

∑
j∈A

P
(
Xi ≤ s|X = xj

)
P (X = xj)

=
∑
j∈A

P (X = xj)

(
1

n

n∑
i=1

P
(
Xi ≤ s|X = xj

))
=
∑
j∈A

aj

(
1

n

n∑
i=1

1{xj
i≤s}

)
,

where xji denotes the i-th component of the vector xj and aj = P (X = xj), j ∈

A. Note that the aj’s are nonnegative,
∑

j∈A aj = 1 and, for any j ∈ A, the

function
∑n

i=1 1{xj
i≤s} is the distribution function of a random variable uniformly

distributed on {xj1, . . . , xjn}. Being X an n-complete mix, we have that
∑n

i=1 x
j
i =

nµ when aj > 0. As a result, F can be written as a countable convex sum of

distributions in MS
n(µ), that is F ∈ L(MS

n(µ)).

(c) First, note that G has marginals identically distributed as F since

lim
xi→+∞,i6=j

R(x1, . . . , xn) =
∑
k∈N

akF k(xj) = F (xj), 1 ≤ j ≤ n.

In order to show that G is the distribution an n-complete mix, we prove that

Gk(x1, . . . , xn) =
1

n!

n∏
i=1

[nF k(x[i])− i+ 1]+

is the distribution of an n-complete mix with center µ, for any k ∈ N.

Since F k ∈ MS
n(µ), there exist yk1 ≤ · · · ≤ ykn such that

∑n
i=1 y

k
i = nµ and

F k(yki ) = 1/n
∑n

j=1 1{yk
j≤yk

i }. Noting that

1

n!

n∏
i=1

[nF k(x[i])− i+ 1]+ =
1

n!

∑
π∈Pn

1n
yk

π(i)
≤xi, 1≤i≤n

o,
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we have that, for any k ∈ N, Gk is uniformly distributed on the n! vectors

(ykπ(1), . . . , y
k
π(n)), π ∈ Pn, k ∈ N.

Thus, Gk is the distribution of an n-complete mix with center 1/n
∑n

i=1 y
k
i = µ,

from which it follows that also G =
∑

k∈N akG
k is the distribution of an n-

complete mix with center µ.

Remark 4.3.1. There are some points to remark about Theorem 4.3.3:

(i) Similarly to what done in the proof of point (b), one can show that an arbitrary

n-CM distribution with center µ can be written as an integral of n-discrete

uniform distributions with center µ.

(ii) Using the notation introduced in the proof of point (c), the distribution G can

be seen as the distribution of the random variable
∑

k∈N 1{Z=k}G
k, where Z a

discrete random variable giving mass ak to k ∈ N and independent from the

Gk’s. Note, however, that the distribution of an n-complete mix for a discrete

F may not be unique.

(iii) A number of the n points of the support of an n-discrete distribution can be

chosen to be equal. The set of n-discrete uniform distributions therefore includes

all distributions giving masses (k/n), k ∈ N to at most n different points.

(iv) The convex combination of n-discrete distributions with different centers may

fail to be n-CM. For example, the Bernoulli distribution F (s) =
(
1{0≤s} + 1{1≤s}

)
/2

is the convex sum of two 1-CM distributions but it is not 1-CM. Therefore,

the assumption of a common center cannot be dropped in all points of Theo-

rem 4.3.3.
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As a corollary of Theorem 4.3.1 (c) and Theorem 4.3.3 (b), we find the main result

of this section.

Corollary 4.3.4. A distribution is n-CM with center µ if and only if is the limit of a

sequence of a countable convex combination of n-discrete uniform distributions with

center µ.

4.4 Classes of CM Distributions

One nice result for the complete mixability is given in Rüschendorf and Uckelmann

[87]. We cite this result in a rewritten form in the following theorem.

Theorem 4.4.1. (Rüschendorf and Uckelmann) Suppose the probability density

function p(x) of a distribution P is symmetric and unimodal, then P is n-CM for

n ≥ 2.

In this section, we characterizes three more classes of CM distributions.

4.4.1 Distributions with a monotone density

In this section, we will see that the mean condition (4.5) is sufficient for a monotone

density.

Theorem 4.4.2. Suppose the probability density function p(x) of a distribution F

with mean µ is monotone on [a, b] and p(x) = 0 elsewhere. Then F is n-CM if

a+
1

n
(b− a) ≤ µ ≤ b− 1

n
(b− a).

Proof of Theorem 4.4.2. For n = 1 or 2, the proof is trivial since no distribution

satisfies the assumption when n = 1, and only one distribution, namely the uniform

distribution, satisfies the assumption when n = 2. Hence we only need to prove the

case of n ≥ 3. Since the complete mixability is invariant under affine transformations,

without losing generality we assume the center to be 0.

147



www.manaraa.com

We start the proof with the discrete version of Theorem 4.4.2. We say a CM

distribution A is CM on a set S, if A is supported in the set S. Let d and N be

positive integers, where d = n− 1 ≥ 2, and let SdN := {−N, · · · ,−1, 0, 1, · · · , dN} be

a set of (d+ 1)N + 1 points. In the following proof, we identify a discrete probability

distribution with its probability mass function A for simplicity.

Lemma 4.4.3. Suppose the mass function A is supported in SdN , and the pair (A,N)

satisfies

(i) (decreasing mass)

A(−N + 1) ≥ · · · ≥ A(0) ≥ · · · ≥ A(dN) ≥ 0, (4.10)

(ii) (boundary condition)

CN(A) = A(−N)−[d×A(dN)+(d− 1)×A(dN−1)+· · ·+1×A(dN−d+1)] ≥ 0,

(4.11)

(iii) (zero center of mass)
dN∑

i=−N

i× A(i) = 0. (4.12)

Then A is (d+ 1)-CM on SdN .

Proof. We prove this lemma by induction over N . Our idea is to write A = Ā +∑K
i=0 biBi such that for each i, bi ≥ 0, Bi is a (d + 1)-discrete uniform distribution

centered at 0 (on SdN if not specified) mass function, Ā is supported in SdN−1, and

(Ā, N − 1) satisfies (i) and (ii). Note that (iii) is automatically satisfied. First we

need the following fact.

Lemma 4.4.4. If (4.10), (4.12) in Lemma 4.4.3 hold and A(−N) ≥ d+1
2d
A(−N + 1),

then (4.11) holds.
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The proof of Lemma 4.4.4 will be presented in Section 4.7. This lemma implies

that if A(−N) ≥ A(−N + 1), (4.10) and (4.12) hold, then (4.11) holds. Thus, a

decreasing mass function with zero center is sufficient for Lemma 4.4.3.

Now suppose Lemma 4.4.3 holds for the case of N − 1 (here N ≥ 2).

Case 1. CN(A) = 0.

If A(−N)=0 then (4.11) implies that A(dN) = A(dN−1) = · · · = A(dN−d+1) =

0. Thus A is supported in SdN−1 and (A,N − 1) satisfies (i), (ii) and (iii). Therefore

A is (d+ 1)-CM on SdN−1 (and hence on SdN).

If A(−N) > 0, we construct Bi, i = 0, 1, · · · , d − 1 such that Bi(−N) = d − i,

Bi(−N + 1) = i, Bi(dN − i) = 1 and 0 otherwise. Obviously each Bi is simply

mixable. Let bi = A(dN − i) and Ā = A −
∑d−1

i=0 biBi. It is straightforward to

check Ā is still a mass function and is supported in SdN−1. Clearly Ā(i) = A(i) for

i = −N + 2, · · · , dN − d, and hence (i) is satisfied by (Ā, N − 1).

The rest work is to check (ii) CN−1(Ā) ≥ 0. It is just some algebraic calculation

and we leave it in Section 4.7. Thus Ā is (d + 1)-CM on SdN−1. This shows A =

Ā+
∑d−1

i=0 biBi is (d+ 1)-CM (on SdN).

Case 2. CN(A) > 0.

Denote M = MA = max{i : A(i) > 0}. By (i) and A(−N) > 0, it follows that

N ≤M ≤ dN . Let q and r be integers such that

(d+ 1)N = (N +M)q + r, 0 ≤ r < N +M.

Obviously q < d. For i = 0, 1, · · · ,M +N − r, Let Bi(−N) = d− q, Bi(M) = q − 1,

Bi(r − N + i) = Bi(M − i) = 1 and 0 elsewhere. It is easy to check each Bi is

(d+ 1)-discrete uniform and centered at 0.

Let T = TA =
∑M+N−r

i=0 Bi. Then T is (d+1)-CM, T (−N) = (d−q)(M+N−r+1),

T (M) = (q− 1)(M +N − r+1)+2, T (r−N) = T (r−N +1) = · · · = T (M − 1) = 2
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and 0 otherwise. We have

CN(T ) =

 (d− q)(M +N − r + 1), M ≤ dN − d,

(d− 1)((d+ 1)N − 2r + 1)− (d− r + 1)(d− r), M > dN − d.

Thus CN(T ) > 0. Let bA = max{x : xT (M) ≤ A(M), xCN(T ) ≤ CN(A))}. For

each mass function A, we define an operator RA := A− bATA. Note that CN(RA) =

CN(A)−bACN(T ). It is straightforward to check RA is still a mass function, (RA,N)

satisfies (i), (ii), (iii) and either RA(M) = 0 or CN(RA) = 0.

If CN(RA) = 0, then RA fits into Case 1, being (d + 1)-CM and therefore A =

RA+ bATA is (d+ 1)-CM.

If CN(RA) > 0, then RA(M) = 0 and MRA ≤ M − 1. Now we consider RkA,

k = 2, 3, · · · . Since MRkA ≥ 0 for all k as long as RkA 6= 0, we have CN(RkA) = 0

for some k. Thus RkA is (d+ 1)-CM and so is A = RkA+
∑k−1

i=0 bRiATRiA.

Now it is only left to show that the lemma holds for N = 1. Let TA and MA be

defined as in Case 2. When N = 1, (iii) becomes C1(A) = 0, therefore C1(TA) = 0

since (TA, 1) satisfies (iii). For A(−1) = 0, A = 0 on Sd1 \ {0} and the lemma is

trivial. For A(−1) > 0, let bA = A(MA)/TA(MA) and RA := A − bATA. Similar to

case 2, RA is still a mass function, (RA, 1) satisfies (i), (ii), (iii) and RA(MA) = 0.

We consider RkA, k = 2, 3, · · · and eventually MRkA = 0 for some k. Hence RkA is

(d+ 1)-CM and so is A. This completes the proof.

The following lemma is an immediate consequence of Lemma 4.4.3 and Lemma

4.4.4.

Lemma 4.4.5. Suppose the probability mass function of a distribution P with mean

0 is decreasing on SdN and is 0 elsewhere, then P is d+ 1-CM.

Now let us write any distribution with a monotone density as the limit of dis-

crete distributions in Lemma 4.4.5. Let SN = {−N/N, (−N + 1)/N, · · · , (dN −

1)/N, dN/N}. For each continuous distribution P on [−1, d] with mean zero and
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decreasing density, let Y ∼ P . Denote P̄N the distribution function of bNY c/N and

P̂N the discrete uniform distribution on SN . Since

− 1

N
≤
∫
yP̄N(dy) ≤ 0

and ∫
yP̂N(dy) =

d− 1

2
≥ 1

2
,

there exists λN : 0 ≤ λN < 2/N such that∫
y((1− λN)P̄N + λN P̂N)(dy) = 0.

Then the distributions {(1 − λ)P̄N + λP̂N} are decreasing on SN , with mean zero,

and converge weakly to P as N →∞. This argument shows that there exist Pk
d→ P

and each Pk is d + 1-CM and centered at 0. Then by Theorem 4.3.1, as the limit

of completely mixable distributions, each continuous distribution P on [−1, d] with

mean 0 and decreasing density is d+ 1-CM.

Finally, by Proposition 4.2.1(1), each continuous distribution P on [0, 1] with mean

1/n and decreasing density is n-CM. Just note that any decreasing density on [0, 1]

is also an decreasing density on [0, a], hence each continuous distribution P on [0, 1]

with mean a/n, a ≥ 1 and decreasing density is n-CM. Using Proposition 4.2.1(1)

once again and the proof of Theorem 4.4.2 is complete.

Remark 4.4.1. By Proposition 4.2.1(6), the condition in Theorem 4.4.2 is necessary

and sufficient for a distribution P with monotone density on [a, b] (where a and b are

the infimum and the supremum of {x : p(x) > 0}) to be n-CM.

Remark 4.4.2. As a consequence of Theorem 4.4.2, the uniform distributions and

distributions with a unimodal density (which are convex combinations of uniform

distributions with the same center) are n-CM for n ≥ 2. This is another proof of

Theorem 4.4.1, different from the one given in [87].
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4.4.2 Distributions with a concave density

In this section, we show that any continuous distribution with a concave density is

completely mixable. Similarly to the method used in the proof of Theorem 4.4.2, we

will first prove complete mixability of a particular class of discrete distributions with

concave mass function.

Theorem 4.4.6. Suppose F is a discrete distributions on the set

SN,M = {−N,−N + 1, . . . ,−1, 0, 1, . . . ,M − 1,M}, N,M ∈ N0,

having mean µ = 0 and mass function f : SN,M → [0, 1] satisfying f(−N), f(M) > 0

and

f(i− 1) + f(i+ 1) ≤ 2f(i), −N + 1 ≤ i ≤M − 1. (4.13)

Then, F is n-CM for any n ≥ 3.

In order to prove Theorem 4.4.6, we need the following lemma.

Lemma 4.4.7. Under the assumptions of Theorem 4.4.6, we have

M ≤ 2N and N ≤ 2M.

Proof. We only need to prove that M ≤ 2N , as N ≤ 2M follows by symmetry. The

condition µ = 0 implies that M = 0 if and only if N = 0, thus we can assume M,N

to be both positive. It is easy to see that (4.13) is equivalent to

A(v) ≥ (w − v)A(u) + (v − u)A(w)

w − u
, (4.14)

for all u, v, w ∈ SN,M such that u ≤ v ≤ w and u < w. For instance, the two

inequalities

f(v) ≥ f(v − 1) + f(v + 1)

2
and f(v − 1) ≥ f(v − 2) + f(v)

2

imply

f(v) ≥ f(v − 2) + 2f(v + 1)

3
.
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As particular cases of (4.14), we get

f(i) ≥ (M − i)f(0) + if(M)

M
>
M − i

M
f(0), 0 ≤ i ≤M, (4.15a)

f(0) ≥ Mf(−j) + jf(M)

M + j
>

M

M + j
f(−j), 0 ≤ j ≤ N. (4.15b)

Since µ =
∑

i∈SN,M
if(i) = 0, (4.15) implies that

f(0)M(M − 1)(M + 1)

6M
=
f(0)

M

M∑
i=1

i(M − i)

<

M∑
i=1

if(i) =
N∑
j=0

jf(−j) < f(0)

M

N∑
j=1

j(M + j) =
f(0)N(N + 1)(3M + 2N + 1)

6M
,

from which we have

M(M + 1)(M − 1) < N(N + 1)(3M + 2N + 1).

In the above equation, the right-hand side is increasing in N and equality holds when

N = (M + 1)/2. Therefore, we have N > (M − 1)/2, namely M ≤ 2N.

Proof of Theorem 4.4.6. We will prove the theorem by induction over M + N , the

cardinality of the set SN,M . Note that, if M = N = 0, F is the unit mass at 0 and

thus is completely mixable for any n. Moreover, the case M+N = 1 is not allowed by

the zero mean condition. Therefore, the first step of the induction will be M+N = 2.

In this case the zero mean condition combined with (4.13) forces F to be supported

on {−1, 0, 1} with masses f(−1) = f(1) = a and f(0) = 1 − 2a with a < 0 ≤ 1/3.

We can write F as

F = (3a)G+ (1− 3a)H, (4.16)

where G is the uniform distribution on {−1, 0, 1} and H is the unit mass at 0. Being

a unit mass, H is n-CM for any n ∈ N, while G satisfies the assumptions of Lemma

4.4.5 with d = n−1 and, then , is n-CM for any n ≥ 2. Equation (4.16) states that F

is the convex sum of two n-CM distributions with center µ = 0. By Theorem 4.3.3(a),

F is n-CM, for any n ≥ 2.
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Now, we assume that the theorem holds for any distribution H satisfying the

assumption of the theorem with N + M ≤ (K − 1) points in SN,M and prove that

it holds for any distribution F with K points in SN,M , K ≥ 3. As illustrated for

N +M = 2, the idea of the proof is to decompose F as the convex sum of such an H

and another n-CM distribution G.

Let F a distribution satisfying the assumption of the theorem with N + M =

K,K ≥ 3. W.l.o.g., in what follows we assume M ≥ N (the theorem holds symmet-

rically for N ≤ M). We denote by G the discrete distribution having mass function

g : SN,M → [0, 1] given by

g(−N) =
(M −N + 1)

(M +N + 1)
, g(−N + 1) = · · · = g(M) =

2N

(M +N + 1)(M +N)
.

Elementary calculations show that the distribution G has first moment µ = 0 and,

being M ≥ N , that g is decreasing. From Lemma 4.4.7, we have that M ≤ 2N ≤

(n − 1)N for any n ≥ 3, and, then, the distribution G satisfies the assumption of

Lemma 4.4.5 with d = n − 1. As a consequence, G is n-CM. Now, we define the

function f̂ : SN,M → R as

f̂ = f − k1g, (4.17)

where

k1 = min

{
f(−N)

g(−N)
,
f(M)

g(M)

}
> 0.

Note that we have

f̂(−N) = f(−N)− k1g(−N) ≥ f(−N)− f(−N)

g(−N)
g(−N) = 0, (4.18a)

f̂(M) = f(M)− k1g(M) ≥ f(M)− f(M)

g(M)
g(M) = 0. (4.18b)

Since g is convex on SN,M , the function f̂ is the sum of two concave densities and,

therefore, is concave. Concavity of f̂ , combined with (4.18), implies that f̂ is also

nonnegative on SN,M . At this point, it is possible to define the discrete distribution
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H as the one having concave mass function

h = f̂/k2, (4.19)

where

k2 =
∑

i∈SN,M

f̂(i).

Note that the distribution H has mean µ = 0 as

M∑
i=−N

ih(i) =
1

k2

(
M∑

i=−N

if(i)− k1

M∑
i=−N

ig(i)

)
= 0.

Moreover, at least one of the values f̂(−N) and f̂(M) is equal to zero. In conclusion,

H is a distribution function on a subset of SN,M containing at most K − 1 points,

having mean µ = 0 and concave mass function h. By the induction assumption, H is

n-CM. Combining (4.17) and (4.19), we obtain that

F = k1G+ k2H, with k1 + k2 = 1.

Thus, F is the convex combination of two n-CM distributions and, then, F is n-

CM.

Theorem 4.4.8. Any continuous distribution on a bounded interval (a, b) having a

concave density is n-CM for any n ≥ 3.

Proof. The proof is analogous to the part of the proof of Theorem 4.4.2 following

Lemma 4.4.5. For any F with a concave density, we find a sequence of discrete

concave distributions that goes to F . Note that a distribution with concave density

on (0, 1) is n-CM for all n ≥ 3, hence the mean condition

1/n ≤ µ ≤ 1− 1/n

is automatically satisfied for n ≥ 3.

According to Theorem 4.4.8, The Beta(α, β) distribution with parameters 1 ≤

α, β ≤ 2 is n-completely mixable for n ≥ 3. Any triangular distribution has a

concave density and hence it is n-completely mixable for n ≥ 3.
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4.4.3 Radially symmetric distributions

In this section, we show that any n-radially symmetric distribution is completely

mixable. The definition of an n-radially symmetric distribution which we give here

is an extension of the one introduced in Knott and Smith [61].

Definition 4.4.1. Suppose that U is a random variable uniformly distributed on

(0, 1) and let A = (A1, . . . , An), B = (B1, . . . , Bn) be two random vectors on Rn

independently distributed from U . A random variable X and its distribution are

called n−radially symmetric if

X = a+
n∑
k=1

(Ak cos(2πkU) +Bk sin(2πkU)) , (4.20)

for some constant a ∈ R.

In the above definition, the random vectors A and B can be chosen to have an

arbitrary distribution on Rn.

Theorem 4.4.9. Any n-radially symmetric distribution is m-CM for any m ≥ n+1.

Proof. Let F be the n−radially symmetric distribution of a random variable X of

the form (4.20), for some U uniformly distributed on (0, 1) and A and B distributed

independently from U . Fixed an integer m ≥ n + 1, let the m random variables

X1, . . . , Xm be defined as

Xi = a+
n∑
k=1

(
Ak cos

(
2πk

(
V +

i

m

))
+Bk sin

(
2πk

(
V +

i

m

)))
, 1 ≤ i ≤ m,

where V is random variable uniformly distributed on (0, 1) and independent from A

and B. Note that

cos

(
2πk

(
V +

i

m

))
∼ cos(2πkU) and sin

(
2πk

(
V +

i

m

))
∼ sin(2πkU),

for 1 ≤ i ≤ m and 1 ≤ k ≤ n. Therefore, the Xi’s are all identically distributed as

F . To complete the proof, we show that their sum is, a.s, the constant ma.
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For 1 ≤ i ≤ m, let ξi = ei2πki/m, where i is the imaginary unit. We denote by

dk = gcd(k,m) the greatest common divisor of k and m. Since m ≥ n + 1, we have

that k ≤ n ≤ m − 1 and, thus, dk < m for 1 ≤ k ≤ n. When dk = 1, the m

values ξ1, . . . , ξm are all the roots of the equation ξm = 1 and, therefore,
∑m

i=1 ξi = 0.

If, instead, 1 < dk < m, then the m/dk values ξ1, . . . , ξm/dk
are all the roots of the

equation ξm/dk = 1 and, again, we have
∑m

i=1 ξi = dk
∑m/dk

i=1 ξi = 0. From this, it

easily follows that
m∑
i=1

(
cos

(
2πk

(
V +

i

m

))
+ i sin

(
2πk

(
V +

i

m

)))
=

m∑
i=1

ei2πk(V+i/m)

= ei2πkV
m∑
i=1

ξi = 0.

The above equality implies that

k∑
i=1

cos

(
2πk

(
V +

i

m

))
=

k∑
i=1

sin

(
2πk

(
V +

i

m

))
= 0

and, therefore, that
m∑
i=1

Xi = ma+
m∑
i=1

n∑
k=1

(
Ak cos

(
2πk

(
V +

i

m

))
+Bk sin

(
2πk

(
V +

i

m

)))

= ma+
n∑
k=1

(
Ak

m∑
i=1

cos

(
2πk

(
V +

i

m

))
+Bk

m∑
i=1

sin

(
2πk

(
V +

i

m

)))

= ma.

An interesting example of a radially symmetric distribution is given by the contin-

uous random variable X = cos(2πU), where U is uniformly distributed on (0, 1). By

Theorem 4.4.9, the distribution of X is n-CM for n ≥ 2. As illustrated in Figure 4.1,

the density of X is a convex function on the interval [−1, 1]. Therefore, Theorem 4.4.9

indicates that there exist continuous n-CM distributions with a large density at both

endpoints of their support. As the set of n-CM distributions with a given center

is convex, Theorem 4.4.9 is no doubt useful to construct new classes of completely

mixable distributions.
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ï1 0 1

Figure 4.1: The density of the random variable X = cos(2πU).

4.5 Convex minimization problems

Fréchet class problems are of great interest in actuarial science, and mathematical

finance, as introduced in Chapter I.

In this section, we study a convex minimization problem in a homogenous Fréchet

class using the idea of CM distributions. Throughout this section, let X = (X1, · · · , Xn),

S = X1+· · ·+Xn and define the homogenous Fréchet class as Section 4.1 and Chapter

I

Fn(F ) = Fn(F, · · · , F ) = {X : Xi ∼ F, i = 1, · · · , n}.

Fn(F ) is the set of random vectors with a given marginal distribution F . We are

interested in the total risk S when X ∈ Fn(F ).

Question A: the expectation of a convex function. Find

inf
X∈Fn(F )

E[f (S)] (4.21)

for f being a convex function.

The expectation of convex (concave) functions plays an important role in the study

of insurance, finance, and economics. For instance, E[f(S)] includes important quan-

tities such as the variance, stop-loss premium, excess of loss, prices of the European
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options and multivariate Spearman’s rho. More over, risk-avoiding (risk-seeking) util-

ity functions are concave (convex), while E[f(S)] is the expected utility. E[f(S)] also

appears in the convex ordering and optimization problems. Therefore, Question A

is related to various topics in statistics, risk theory, copulas and stochastic orders.

We refer to Rüschendorf and Uckelmann [87] and Hammersley and Handscomb [43]

for variante minimization problems, Embrechts, Lindskog and McNeil [33] and Em-

brechts, McNeil and Straumann [34] for problems of bounds in risk theory, Nelsen

[69] for copulas, Joe [48] for Fréchet classes and Shaked and Shanthikumar [92] for

stochastic orders.

As introduced in Chapter I, it is well-known that the maximum of E[f(S)] over

X ∈ Fn(F ) is obtained by letting X1 = · · · = Xn. However, the infimum stays a

mystery for n ≥ 3.

Jensen’s inequality connects Question A with the CM distributions.

Proposition 4.5.1. If f is a (strictly) convex function and µ < ∞ is the mean of

F , then

inf
X∈F(F ;n)

E[f (X1 + · · ·+Xn)] ≥ f(nµ), (4.22)

and the equality in (4.22) holds if (and only if) F is n-CM.

This is a direct application of the Jensen’s inequality. Thus, the identification of

CM distributions immediately leads to the solution to Question A.

Practically, some risks are unbounded from one side, hence the distribution vi-

olates the mean condition (4.5) for CM. Risks with a decreasing density, such as

Perato or exponentially distributed risks, are commonly used in practice. Hence, in

the following we solve Question A for distributions with a monotone density. We first

introduce a class of copulas QP
n in Section 4.5.1. Then we give our main theorem for

problem (4.21) in Section 4.5.2 and illustrate some applications in Section 4.5.3.
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4.5.1 The copula QP
n

Let P be a distribution with monotone density on its support, and f : R → R is

a convex function. In the following we denote G the inverse cdf of Yi ∼ P , then

Yi = G(Xi) for some Xi ∼ U[0, 1], i = 1, · · · , n and (4.21) reads as

min
X∈Fn(U[0,1])

Ef (G(X1) + · · ·+G(Xn)) = min
C∈Cn

∫
G(x1) + · · ·+G(xn)dC(x1, · · · , xn),

(4.23)

where Cn is the set of all n-copulas. In the following, we use the setting (4.23) for

Question A, and X1, · · · , Xn represent uniform [0,1] random variables.

Remark 4.5.1.

1. P having an increasing (decreasing) density is equivalent to G being continuous

and concave (convex). Thus both f and G have convexity in this problem and

another equivalent setting for (4.21) is

min
X∈Fn(U[0,1])

Ef (G(X1) + · · ·+G(Xn))

for f : R → R being convex and G : [0, 1] → R being concave (convex),

continuous and increasing.

2. If X ∼ P and P has decreasing density, we can simply replace X by −X (note

that f(−x) is also convex). Thus without loss of generality, in the following we

will assume P has increasing density.

To obtain an optimal coupling for problem (4.23), we construct n-copulas QP
n (c)

(n ≥ 2) for some 0 ≤ c ≤ 1/n. For P with an increasing density and a constant

c ∈ [0, 1
n
, we define a copula by QP

n (c), if (X1, · · · , Xn) ∼ QP
n (c) satisfying

(a) For each i = 1, · · · , n, the joint-density of X1, · · · , Xn given Xi ∈ [0, c] is uni-

formly supported on line segments xj = 1− (n− 1)xi, ∀j 6= i, xi ∈ [0, c]; and

(b) G(X1)+ · · ·+G(Xn) is a constant when Xi ∈ (c, 1−(n−1)c) for any i = 1, · · · , n.
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Note that such a copula may not exist for some c > 0.

Proposition 4.5.2. Denote

H(x) = G(x) + (n− 1)G(1− (n− 1)x). (4.24)

There exists a copula QP
n (c) satisfying (a) and (b) if∫ 1

n

c

H(t)dt ≤ (
1

n
− c)H(c). (4.25)

Proof. We first take random variables Y1, · · · , Yn ∼ U([0, c] ∪ [1 − (n − 1)c, 1]) such

that the joint-density of Y1, · · · , Yn is uniformly supported on each line segment yj =

1 − (n − 1)yi, ∀j 6= i, yi ∈ [0, c]. By Theorem 4.4.2, there exist Z1, · · · , Zn ∼

U[c, 1 − (n − 1)c] such that G(Z1) + · · · + G(Zn) is a constant since G(Zi) has an

increasing density and that (4.25) implies

E(G(Z1)) ≤ G(c) +
n

n− 1
[G(1− (n− 1)c)−G(c)].

Let U ∼ U[0, 1] be independent of (Y1, · · · , Yn, Z1, · · · , Zn) and Xi = I{U<nc}Yi +

I{U≥nc}Zi, then Xi ∼ U[0, 1] for i = 1, · · · , n. Properties (a) and (b) are satisfied by

the joint distribution of X1, · · · , Xn, which shows that QP
n (c) exists.

Remark 4.5.2.

1. Property (a) describes the joint distribution on the set
⋃n
i=1{0 ≤ xi ≤ c, 1−(n−

1)c ≤ xj ≤ 1, j 6= i}, and property (b) describes it on the set (c, 1− (n− 1)c)n.

These two sets are disjoint and their union is [0, 1]n.

2. The key idea of constructing QP
n (c) is that whenXi is small, we let other random

variables Xj, j 6= i be large. When each of Xi, i = 1, · · · , n is of medium size,

we let G(X1) + · · · + G(Xn) be a constant. This could be a good candidate of

optimal coupling since the variance of G(X1) + · · ·+G(Xn) is largely reduced.

Later we will show that QP
n (c) is optimal for the smallest possible c.
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3. QP
n (c) does not always exist for arbitrary c and it may not be unique while exists.

However, when X ∼ QP
n (c), E[f(G(X1) + · · · + G(Xn)] is determined by prop-

erties (a) and (b). Therefore, in the following QP
n (c) is just one representative

in the family of copulas satisfying (a) and (b).

4. It is easy to check that when QP
2 (c) exists, it is exactly the Fréchet-Hoeffding

lower bound W2(u, v) = (u+ v − 1)+.

We denote cn the smallest c such that QP
n (c) exists and let QP

n := QP
n (cn). Note

that cn = 0 if and only if P is n-CM. In the following we will find cn.

Proposition 4.5.3. The smallest possible c is given by

cn = min{c ∈ [0,
1

n
] :

∫ 1
n

c

H(t)dt ≤ (
1

n
− c)H(c)}. (4.26)

Proof. Suppose QP
n (c) exists. By (b), when any of Xi ∈ (c, 1 − (n − 1)c), G(X1) +

· · ·+G(Xn) is a constant, namely

G(X1) + · · ·+G(Xn) = E(G(X1) + · · ·+G(Xn)|c ≤ Xi ≤ 1− (n− 1)c)

=
n

1− nc

∫ 1−(n−1)c

c

G(t)dt.

Noting that the conditional distribution of G(Xi) on the set {Xi ∈ (c, 1−(n−1)c)} is

completely mixable, by Proposition 4.2.1(6) its conditional mean is less than or equal

to G(c)/n+ (n− 1)G(1− (n− 1)c)/n. Thus we have a necessary condition on c,∫ 1−(n−1)c

c

G(t)dt ≤ (
1

n
− c)[G(c) + (n− 1)G(1− (n− 1)c)]. (4.27)

Together with (4.24), we obtain (4.25) from (4.27).

Note that H(x) is concave on [0, 1
n
] since G(x) is concave. Hence the set of c

satisfying (4.27) is a closed interval [ĉn,
1
n
]. (4.25) becomes ĉn ≤ c ≤ 1

n
and therefore

cn ≥ ĉn. By Proposition 4.5.2 we know QP
n (ĉn) exists and thus cn = ĉn.

Now we have cn and QP
n = QP

n (cn).
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4.5.2 Main theorem

In the next we show the minimality of QP
n . The following lemma (see Theorem 3.A.5

in Shaked and Shanthikumar [92]) will be used.

Lemma 4.5.4. Suppose X and Y with distribution functions F1, F2 respectively sat-

isfy EX = EY and for any c in [0, 1],
∫ c

0
F−

1 (t)dt ≥
∫ c

0
F−

2 (t)dt, where F−
1 (t) =

sup{x : F1(x) < t} and F−
2 (t) = sup{y : F2(y) < t}. Then for any convex function f ,

E(f(X)) ≤ E(f(Y )).

Theorem 4.5.5. Suppose P is a distribution with increasing density and G is the

inverse cdf of P , then for any convex function f ,

min
(Z1,··· ,Zn)∈Fn(P )

Ef(Z1 + · · ·+ Zn) = Ef (G(X1) + · · ·+G(Xn)) , (4.28)

where (X1, · · · , Xn) ∼ QP
n .

Proof. Let (X1, · · · , Xn) ∼ QP
n and Zi = G(Yi) where Yi ∼ U[0, 1], i = 1, · · · , n.

Denote X = G(X1) + · · · + G(Xn) and Y = G(Y1) + · · · + G(Yn). Let F1 and F2 be

the cdf of X and Y respectively, F−
1 (t) = sup{x : F1(x) < t} and F−

2 (t) = sup{y :

F2(y) < t}. We will show that for any c ∈ [0, 1],∫ c

0

F−
1 (t)dt ≥

∫ c

0

F−
2 (t)dt.

To obtain this, denote AX(u) =
⋃
i{Xi < u}, AY (u) =

⋃
i{Yi < u} and let

W (u) = P(AY (u)). Obviously u ≤ W (u) ≤ nu and W is invertible. For c ∈ [0, ncn],

let u? = W−1(c), it then follows that c ≥ u? ≥ c/n and {Yi ∈ [0, c/n]} ⊂ {Yi ∈

[0, u?]} ⊂ AY (u?).

By the definition of QP
n , for each i, {Xi ∈ [0, c/n]∪ [1− (n−1)c/n, 1]} = AX(c/n).

Note that Xi
d
= Yi ∼ U and P(AX(c/n)) = P(AY (u?)) = c, therefore

P(AY (u?) \ {Yi ∈ [0, c/n]}) = c− c/n = P(Yi ∈ [1− (n− 1)c/n, 1]).
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Since G is increasing and the above two sets are equally measured, we have

E[I{Yi∈[1−(n−1)c/n,1]}G(Yi)] ≥ E[IAY (u?)\{Yi∈[0,c/n]}G(Yi)].

It follows that

E(IAX(c/n)G(Xi)) = E[(I{Xi∈[0,c/n]} + I{Xi∈[1−(n−1)c/n,1]})G(Xi)]

= E[(I{Yi∈[0,c/n]} + I{Yi∈[1−(n−1)c/n,1]})G(Yi)]

≥ E[(I{Yi∈[0,c/n]} + IAY (u?)\{Yi∈[0,c/n]})G(Yi)]

= E(IAY (u?)G(Yi)).

Thus we have

E(IAX(c/n)X) ≥ E(IAY (u?)Y ). (4.29)

Note that H(x) is concave and differentiable. By the definition of cn, the mean of

H(x) on [cn,
1
n
] is H(cn). With H(x) being concave, we have H ′(cn) ≥ 0 and thus

H(x) is increasing on [0, cn]. Note that on the set AX(cn),

X =
n∑
i=1

I{Xi<cn}[G(Xi) + (n− 1)G(1− (n− 1)Xi)] =
n∑
i=1

I{Xi<cn}H(Xi),

and the events {Xi < cn} i = 1, · · · , n are disjoint. It follows that for t ≤ H(cn),

F1(t) = P(X ≤ t) = nP(H(X1) ≤ t). Thus for c ≤ ncn, F
−
1 (c) = H(c/n) and

E(IAX(c/n)X) = n

∫ c/n

0

H(t)dt =

∫ c

0

H(t/n)dt =

∫ c

0

F−
1 (t)dt. (4.30)

Also note that

E(IAY (u?)Y ) ≥
∫ c

0

F−
2 (t)dt (4.31)

since P(AY (u?)) = c. It follows from (4.39), (4.30) and (4.31) that for any c ∈ [0, ncn],∫ c

0

F−
1 (t)dt ≥

∫ c

0

F−
2 (t)dt.

For c ∈ (ncn, 1], note that H1(x) :=
∫ x

0
F−

1 (t)dt and H2(x) :=
∫ x

0
F−

2 (t)dt are

convex functions and E(X) = E(Y ) thus H1(1) = H2(1). Furthermore we have F−
1 (t)
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is a constant when t ≥ cn since QP
n satisfies (b). By the facts that H1(cn) ≥ H2(cn),

H1(1) = H2(1), H1 is linear over [ncn, 1] and H1, H2 are convex, we conclude∫ c

0

F−
1 (t)dt ≥

∫ c

0

F−
2 (t)dt

for any c ∈ [0, 1]. By Lemma 4.5.4 we obtain

Ef(G(Y1) + · · ·+G(Yn)) ≤ Ef (G(X1) + · · ·+G(Xn))

and it completes the proof.

Remark 4.5.3.

1. In stochastic orderings, the above result is interpreted in the following way:

suppose Y1, · · · , Yn, Z1, · · · , Zn ∼ P and Z1, · · · , Zn have copula QP
n , then

Z1 + · · ·+ Zn ≤cx Y1 + · · ·+ Yn ≤cx nY1.

Thus Z1+· · ·+Zn is the lower bound in the convex order on the sum Y1+· · ·+Yn

with given marginal distributions Yi ∼ P . This completes the result of bounds

in the convex order on the sum in the Fréchet class Fn(P ). For an overview of

the stochastic orderings, see Shaked and Shanthikumar [92].

2. The optimal copula QP
n solving (4.21) depends only on the marginal distribution

P , but not on the convex function f .

3. Although we are able to show the existence and minimality, we are unable to

write the function QP
n explicitly.

Theorem 4.5.6. We have

min
(Y1,··· ,Yn)∈Fn(P )

Ef (Y1 + · · ·+ Yn) = n

∫ cn

0

f(H(x))dx+ (1− ncn)f(H(cn)), (4.32)

where H(x) and cn are defined as in (4.24) and (4.26).
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Proof. Let (X1, · · · , Xn) ∼ QP
n . By Theorem 4.5.5,

min
(Y1,··· ,Yn)∈Fn(P )

Ef (Y1 + · · ·+ Yn)

= Ef (G(X1) + · · ·+G(Xn))

= nE[f(G(X1) + · · ·+G(Xn))I{X1∈[0,cn]}]

+E[f(G(X1) + · · ·+G(Xn))I{X1∈[cn,1−(n−1)cn]}]

= nE[f(H(X1))I{X1∈[0,cn]}] + E[f(H(cn))I{X1∈[cn,1−(n−1)cn]}]

= n

∫ cn

0

f(H(x))dx+ (1− ncn)f(H(cn)).

Corollary 4.5.7. If the density of P is monotone and supported in a finite interval

[a, b], then

min
(X1,··· ,Xn)∈Fn(P )

Ef (X1 + · · ·+Xn) = f(nµ)

for n sufficiently large, where µ is the mean of P .

Proof. We have a < µ < b since P is a continuous distribution. Hence there exists N

such that b − 1
n
(b − a) > µ for n ≥ N . By Theorem 3.3.2 we know P is n-CM and

centered at µ. Thus we have

E[f(nµ)] ≥ min
(X1,··· ,Xn)∈Fn(P )

Ef (X1 + · · ·+Xn) ≥ f(nµ)

by Jensen’s inequality. This shows that

min
(X1,··· ,Xn)∈Fn(P )

Ef (X1 + · · ·+Xn) = f(nµ)

for n sufficiently large.

4.5.3 Examples

The minimum of the expected product of uniform random variables. Let

us look at the problem

Λn := min
X1,··· ,Xn∼U

E(X1X2 · · ·Xn). (4.33)
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Problem (4.33) has a long history. For n = 3 and X, Y, Z ∼ U[0, 1], Rüschendorf

[86] found 1/24 as a lower bound for E(XY Z), but apparently the bound is not

sharp. Baiocchi [6] constructed a discretization of X, Y and Z and applied a linear

programming to approximate the minimum, which leads to a value≈ 0.06159. Bertino

[8] obtained an upper bound ≈ 0.05481 for Λ3, by manually taking the limit of one

class of discretizations of X, Y, Z. He conjectured that this upper bound was the true

value of Λ3. Recently, Nelsen and Ubeda-Flores [70] introduced the coefficients of

directional dependence, whose lower bound has not been found and equals a function

of the lower bound for E(XY Z).

This problem is a special case of problem (4.1). By letting P be the distribution

of log(X), X ∼ U[0, 1] (namely, P = −Expo(1)) and f(x) = exp(x), we can use

Theorem 4.5.5 and Theorem 4.5.6 to solve (4.33).

Corollary 4.5.8. Let (X1, · · · , Xn) ∈ Fn(P ) have copula QP
n . We have

Λn =E(X1 · · ·Xn)

=
1

(n− 1)2

(
1

n+ 1
− (1− (n− 1)cn)

n +
n

n+ 1
(1− (n− 1)cn)

n+1

)
+ (1− ncn)cn(1− (n− 1)cn)

n−1,

(4.34)

where cn is the unique solution to

log(1− (n− 1)c)− log(c) = n− n2c, 0 ≤ c < 1/n. (4.35)

It is an immediate application of Theorem 4.5.5 and Theorem 4.5.6, hence we

omit the proof here.

The numerical values of Λn for different n are presented in Table 4.1. One may

suggest that Λn ∼ e−n as n goes to infinity.

Corollary 4.5.9. We have

Λn = e−n +
n

2
e−2n +O(n4e−3n).

167



www.manaraa.com

n Λn cn e−n Λne
n

1 1/2 N/A 3.6788× 10−1 1.3591
2 1/6 1/2 1.3533× 10−1 1.2315
3 5.4803× 10−2 9.4542× 10−2 4.9787× 10−2 1.1008
4 1.9098× 10−2 2.5406× 10−2 1.8316× 10−2 1.0427
5 6.8604× 10−3 7.9597× 10−3 6.7379× 10−3 1.0182
10 4.5410× 10−5 4.5589× 10−5 4.5400× 10−5 1.0002
20 2.0612× 10−9 2.0612× 10−9 2.0612× 10−9 1.0000
50 1.9287× 10−22 1.9287× 10−22 1.9287× 10−22 1.0000
100 3.7201× 10−44 3.7201× 10−44 3.7201× 10−44 1.0000

Table 4.1: Numerical values of Λn

See Section 4.7 for the proof.

Remark 4.5.4.

1. In fact this approximating procedure can be done infinitely further. For n = 10,

Λ10 − e−10 = 1.0323 × 10−8, 5e−20 = 1.0306 × 10−8. We cam see that the

approximation is already very precise.

2. Nelsen and Ubeda-Flores [70] introduced the directional dependence coefficients

ρ
(α1··· ,αn)
n , αi ∈ {−1, 1}, i = 1, · · · , n. The lower bound on ρ

(α1··· ,αn)
n can be

written as

ρ(α1··· ,αn)
n ≥ min

X1,··· ,Xn∼U
{2nE(X1 · · ·Xn)− 1} = 2nΛn − 1,

and Corollary 4.5.8 provides this value.

Stop-loss premiums of the total risk. Let X1, X2, · · · , Xn ≥ 0 be n individual

risks with the same marginal distributions P . Their stop-loss premium is defined as

E[(X1 + · · · + Xn − t)+] where t ≥ 0 is a constant and (·)+ = max{·, 0}. See Kaas,

Goovaerts, Dhaene and Denuit [54] for references of this topic. An important problem

in variance reduction is to determine the minimum of the stop-loss premium over all

possible dependence structure, i.e.

min
X1,··· ,Xn∼P

E[(X1 + · · ·+Xn − t)+] = min
C∈Cn

E[(G(U1) + · · ·+G(Un)− t)+] (4.36)
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where G is the pseudo-inverse of the cdf of Xi ∼ P , C is the copula of (U1, · · · , Un)

and Cn is the set of n-copulas. Our result solves (4.36) for monotone distributions P .

By Theorem 4.5.5, we have

min
X1,··· ,Xn∼P

E[(X1 + · · ·+Xn − t)+] = EQP
n [(G(U1) + · · ·+G(Un)− t)+]

= n

∫ cn

0

[H(u)− t]+du+ (1− ncn)[H(cn)− t]+.

We provide a numerical result to compare the stop-loss premium E[(X1+X2+X3−t)+]

for 4 different cases when n = 3. Suppose P is the exponential distribution with

parameter 1 and X1, X2, X3 ∼ P .

• Case 1. X1, X2 and X3 are comonotonic (see Denneberg [25]), i.e. X1 = X2 =

X3 almost surely. This case gives the maximum stop-loss premium.

• Case 2. X1, X2 and X3 are independent.

• Case 3. X1, X2 and X3 are negatively correlated with copula C(1,2,3) in Yang,

Qi and Wang. [112] (i.e. the corresponding uniform random variables U1, U2

and U3 in (4.36) satisfy U1 = 1− U3 and U2 is independent of U1 and U3).

• Case 4. X1, X2 and X3 have copula QP
3 . This case gives the minimum stop-loss

premium.

The result is given in Figure 4.2. From the figure, we can see that the minimum

stop-loss premium and the stop-loss premium for independent risks have a significant

difference, especially for large values of t.

4.6 Bounds on the distribution of the total risk

In this section, we study the bounds on the distributions of S in a homogenous Fréchet

class using the idea of CM distributions. Here we use the same notations from Section

4.5.
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Figure 4.2: The stop-loss premium for different dependence structures

Let X = (X1, · · · , Xn) be a risk vector with known marginal distributions F1, · · · , Fn,

denoted as Xi ∼ Fi, i = 1, · · · , n and let S = X1 + · · ·+Xn be the total risk. For the

purpose of risk management, it is of importance to find the best-possible bounds for

the distribution of the total risk S when the dependence structure is unspecified:

Question B: the distribution of the total risk. Find bounds on the distribution

of S:

m+(s) = inf
X∈Fn(F1,··· ,Fn)

P(S < s); (4.37)

M+(s) = sup
X∈Fn(F1,··· ,Fn)

P(S < s). (4.38)

See Embrechts and Puccetti [37] for discussions on such problems in risk management.

Since techniques for handlingM+(s) are very similar to those form+(s), we shall focus

on m+(s) in this section.

First let us review some known results on m+(s). Rüschendorf [85] found m+(s)

when all marginal distributions have the same uniform or binomial distribution; De-

nuit, Genest and Marceau [26] and Embrechts, Höing and Juri [32] used copulas to
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yield the so-called standard bounds, which are no longer sharp for n ≥ 3, and dis-

cussed some applications; Embrechts and Puccetti [35] provided a better lower bound

(still not sharp) when all marginal distributions are the same and continuous, and

some results when partial information on the dependence structure is available; Em-

brechts and Höing [31] provided a geometric interpretation to highlight the shape

of the dependence structures with the worst VaR scenarios; Embrechts and Puccetti

[36] extended this problem to multivariate marginal distributions and provided re-

sults similar to the univariate case. In summary, for n ≥ 3, exact bounds were only

found for the homogenous case (F1 = · · · = Fn = F ) in Rüschendorf [85] where F is

uniform or binomial. Besides the above results on m+(s), Rüschendorf [85] associated

an equivalent dual optimization problem with the bounds for a general function of

X1, · · · , Xn instead of the total risk S.

The bounds m+(s) and M+(s) directly lead to the sharp bounds on quantile-based

risk measures of S. A widely used measure is the so-called Value-at-Risk (VaR) at

level α, defined as

VaRα(S) = inf{s ∈ R : P(S ≤ s) ≥ α}.

The bound on the above VaR is called the worst Value-at-Risk scenario. Deriving

sharp bounds for the worst VaR is of great interest in the recent research of quantita-

tive risk management; see Embrechts and Puccetti [37] and Kaas, Laeven and Nelsen

[55] for more details.

The section is organized as follows. We first provide a new lower bound on m+(s)

in Section 4.6.1. When all the marginal distributions are identical and have a mono-

tone or tail-monotone density, we employ the technique of QF
n introduced in Section

4.5 to find m+(s) in Section 4.6.2 and the worst Value-at-Risk for S in Section 4.6.3.

Some examples are given in Section 4.6.4
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4.6.1 General bounds

For any distribution F , we use F−1(t) = inf{s ∈ R : F (s) ≥ t} to denote the

(generalized) inverse function and we denote by F̃a the conditional distribution of

F on [F−1(a),∞) for a ∈ [0, 1), i.e., F̃a(x) = max
{
F (x)−a

1−a , 0
}

for x ∈ R. It is

straightforward to check that for u ∈ [0, 1], F̃−1
a (u) = F−1((1− a)u+ a). In addition,

let F̃1 = lima→1− F̃a.

In the next we will give a general lower bound on m+(s). Before showing this

bound, we need some definitions and lemmas.

Definition 4.6.1. The random vector X = (X1, · · · , Xn) with marginal distributions

F1, · · · , Fn is called an optimal coupling for m+(s) if

P(X1 + · · ·+Xn < s) = m+(s).

It is known that the optimal coupling for m+(s) always exists (see the introduc-

tion in Rüschendorf [86] for instance). The following lemma is Proposition 3(c) of

Rüschendorf [85], which will be used later.

Lemma 4.6.1. Suppose F1, · · · , Fn are continuous. Then there exits an optimal

coupling X = (X1, · · · , Xn) for m+(s) such that {S ≥ s} = {Xi ≥ F−1
i (m+(s))} for

each i = 1, · · · , n.

Before presenting the main results on the relationship between the bounds on

m+(s) and the jointly mixable distributions, we define the conditional moment func-

tion Φ(t) which plays an important role in the problem of finding m+(s). Suppose

Xi ∼ Fi for i = 1, · · · , n. Define

Φ(t) =
n∑
i=1

E(Xi|Xi ≥ F−1
i (t))

for t ∈ (0, 1), and let

Φ(1) = lim
t→1−

Φ(t), Φ(0) = lim
t→0+

Φ(t).
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Obviously Φ(t) is increasing and continuous when Fi, i = 1, · · · , n are continuous.

Let

Φ−1(x) = inf{t ∈ [0, 1] : Φ(t) ≥ x}

for x ≤ Φ(1) and Φ−1(x) = 1 for x > Φ(1).

Theorem 4.6.2. Suppose the distributions F1, · · · , Fn are continuous.

(1) We have

m+(s) ≥ Φ−1(s); (4.39)

(2) For each fixed s ≥ Φ(0), the equality

m+(s) = Φ−1(s) (4.40)

holds if and only if the conditional distributions F̃1,a, · · · , F̃n,a are jointly mixable,

where a = Φ−1(s).

Proof.

(1) It is trivial to prove the result when Φ(0) = ∞. So we assume Φ(0) < ∞.

Note that from Lemma 4.6.1 we know that there exists an optimal coupling

X = (X1, . . . , Xn) for m+(s) such that {S ≥ s} = {Xi ≥ F−1
i (m+(s))} for each

i = 1, · · · , n. Hence

s ≤ E[S|S ≥ s] =
n∑
i=1

E[Xi|Xi ≥ F−1
i (m+(s))] = Φ(m+(s)),

which implies (4.39).

(2) Suppose X = (X1, · · · , Xn) is an optimal coupling for m+(s) such that {S ≥ s} =

{Xi ≥ F−1
i (m+(s))} for each i. When m+(s) = Φ−1(s), it follows from the proof

of part (1) that E(S|S ≥ s) = s, which implies that the conditional distributions

of X1, · · · , Xn on the set {S ≥ s} are JM, i.e., the conditional distributions

F̃1,a, · · · , F̃n,a are JM.
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Conversely, assume that F̃1,a, · · · , F̃n,a are JM. Then there exist Y1 ∼ F̃1,a, · · · , Yn ∼

F̃n,a such that

Y1 + · · ·+ Yn = E(Y1 + · · ·+ Yn) = Φ(a) ≥ s.

Let

Xi = F−1
i (U)I{U≤a} + YiI{U>a}, (4.41)

where U ∼ U[0, 1] and is independent of (Y1, · · · , Yn). Then it is easy to verify

that Xi has the distribution function Fi for i = 1, · · · , n and

m+(s) ≤ P(S < s) ≤ a = Φ−1(s).

The other inequality m+(s) ≥ Φ−1(s) is shown in part (1).

In the next we apply Theorem 4.6.2 to the homogenous case, i.e. F1 = · · · = Fn ≡

F. For X ∼ F , define

ψ(t) = E(X|X ≥ F−1(t))

for t ∈ (0, 1),

ψ(1) = lim
t→1−

ψ(t), ψ(0) = lim
t→0+

ψ(t),

ψ−1(x) = inf{t ∈ [0, 1] : ψ(t) ≥ x}

for x ≤ ψ(1) and ψ−1(x) = 1 for x > ψ(1). The following corollary follows from

Theorem 4.6.2 immediately.

Corollary 4.6.3. Suppose F1 = · · · = Fn ≡ F and F is continuous.

(1) We have

m+(s) ≥ ψ−1(s/n). (4.42)
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(2) For each fixed s ≥ nψ(0), the equality

m+(s) = ψ−1(s/n) (4.43)

holds if and only if the conditional distribution function F̃a is n-completely mix-

able, where a = ψ−1(s/n).

Embrechts and Puccetti [35] also gave a lower bound form+(s) in the homogeneous

case. Different from the bound in [35], Theorem 4.6.2 deals with a more general case,

where the random variables X1, · · · , Xn do not need to be identically distributed and

positive. Moreover, the bound in Theorem 4.6.2 is easier to calculate. Note that

infinite support generally implies that the mixable condition in Theorem 4.6.2 and

Corollary 4.6.3 does not hold.

4.6.2 Homogenous case with monotone marginal densities

In this section, we investigate the homogenous case when F1 = · · · = Fn = F and F

has either a monotone density or a tail-monotone density on its support. Since the

case of n = 1 is trivial, we assume n ≥ 2.

When the support of the distribution F is unbounded, the mixable condition

in Theorem 4.6.2 and Corollary 4.6.3 is not satisfied by Proposition 4.2.1(6), i.e.,

the bound ψ−1(s/n) is not sharp. In this section, we find a formula for calculating

the bound m+(s) for any distribution with a monotone density or a tail-monotone

density, and obtain the corresponding correlation structure. This partially answers

the question of optimal coupling for m+(s), which has remained open for decades. As

a direct application, the bounds on VaRα(S) are obtained as well.

To calculate m+(s) for F having a monotone marginal density, we will use the

copula QF
n (n ≥ 2) in Section 4.5. More specifically, for some 0 ≤ c ≤ 1/n and

random vector (U1, · · · , Un) with uniform marginal distributions on [0,1], we say

(U1, · · · , Un) ∼ QF
n (c) if
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(a) For each i = 1, · · · , n, given Ui ∈ [0, c], we have Uj = 1− (n− 1)Ui, ∀j 6= i.

(b) F−1(U1)+ · · ·+F−1(Un) is a constant when any one of U ′
is lies in (c, 1− (n−1)c).

Denote QF
n = QF

n (cn) where cn is the smallest possible c such that QF
n (c) exists. Note

that cn = 0 if and only if F is n-CM. Define

H(x) = F−1(x) + (n− 1)F−1(1− (n− 1)x) for F with a non-decreasing density.

(4.44)

From Section 4.5, the smallest possible c for F with an increasing density is

cn = min{c ∈ [0,
1

n
] :

∫ 1
n

c

H(t)dt ≤ (
1

n
− c)H(c)} (4.45)

and for any convex function f ,

min
X1,··· ,Xn∼F

Ef(X1 + · · ·+Xn) = EQF
n f
(
F−1(U1) + · · ·+ F−1(Un)

)
. (4.46)

For F with a decreasing density (n ≥ 2), we define QF
n (c) similarly as follows. For

some 0 ≤ c ≤ 1/n, we say (U1, · · · , Un) ∼ QF
n (c) if

(a’) For each i = 1, · · · , n, given Ui ∈ [1− c, 1], we have Uj = (n− 1)(1−Ui), ∀j 6= i.

(b’) F−1(U1)+ · · ·+F−1(Un) is a constant when any one of Ui lies in ((n−1)c, 1− c).

Define

H(x) = (n− 1)F−1((n− 1)x) +F−1(1−x) for F with a decreasing density. (4.47)

As for the distribution of Z with a decreasing density, the distribution of −Z has an

increasing density, thus the above properties hold for F with a decreasing density.

That is, the smallest possible c for F with a decreasing density is

cn = min{c ∈ [0,
1

n
] :

∫ 1
n

c

H(t)dt ≥ (
1

n
− c)H(c)}. (4.48)

And for a distribution F with a decreasing density and any convex function f the

equation (4.46) holds.
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Although

m+(s) = min
X1,··· ,Xn∼F

E(I{S<s}),

the above results can not be applied directly to solve m+(s) since the indicator func-

tion I(−∞,s)(·) is not a concave function. Here we propose to find m+(s) for F with a

monotone marginal density based on the following properties of QF
n .

Proposition 4.6.4. Suppose F admits a monotone density on its support.

1. If (U1, · · · , Un) ∼ QF
n (c) and F has an increasing density, then I{Ui∈(c,1−(n−1)c)} =

I{U1∈(c,1−(n−1)c)} a.s. for i = 1, · · · , n.

2. If X1, · · · , Xn ∼ F with copula QF
n , then

S = X1 + · · ·+Xn =

 H(U/n)I{U≤ncn} +H(cn)I{U>ncn}, cn > 0;

nE(X1), cn = 0
(4.49)

for some U ∼ U[0, 1].

The proof of Proposition 4.6.4 is given in the appendix.

Now we are ready to give a computable formula for m+(s). In the following we

define a function φ(x) which works similarly as Φ(x) in the CM case.

For F with a decreasing density and a ∈ [0, 1], define

Ha(x) = (n− 1)F−1(a+ (n− 1)x) + F−1(1− x) (4.50)

for x ∈ [0, 1−a
n

] and

cn(a) = min{c ∈ [0,
1

n
(1− a)] :

∫ 1
n

(1−a)

c

Ha(t)dt ≥ (
1

n
(1− a)− c)Ha(c)}. (4.51)

Write

φ(a) =

 Ha(cn(a)) if cn(a) > 0,

nψ(a) if cn(a) = 0.
(4.52)
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On the other hand, for F with an increasing density and a ∈ [0, 1], define

Ha(x) = F−1(a+ x) + (n− 1)F−1(1− (n− 1)x), (4.53)

cn(a) = min{c ∈ [0,
1

n
(1− a)] :

∫ 1
n

(1−a)

c

Ha(t)dt ≤ (
1

n
(1− a)− c)Ha(c)} (4.54)

and

φ(a) =

 Ha(0) if cn(a) > 0,

nψ(a) if cn(a) = 0.
(4.55)

Some probabilistic interpretation of the functions Ha(x) and φ(a) is given in the

following remark. Technical details are put in Lemma 4.6.5 later.

Remark 4.6.1. Suppose Y1, · · · , Yn ∼ F̃a with copula QF̃a
n . By (4.49) we have

Y1 + · · ·+ Yn =

 H̃(U/n)I{U≤nc̃n} + H̃(c̃n)I{U>nc̃n}, c̃n > 0,

nE(Y1), c̃n = 0

for some U ∼ U[0, 1], where H̃(x) and c̃n are H(x) and cn defined in (4.44), (4.45),

(4.47) and (4.48) by replacing F with F̃a. It is easy to check that H̃(x) = Ha((1−a)x),

c̃n = cn(a)/(1 − a) and H̃(c̃n) = Ha(cn(a)). For cn(a) > 0, later we will show that

Ha(x), x ∈ [0, cn(a)] attains its minimum value at Ha(cn(a)) for F̃a with a decreasing

density and at Ha(0) for F̃a with an increasing density. Therefore, the minimum

possible value of Y1 + · · ·+ Yn is

min
x∈[0,cn(a)]

Ha(x)I{cn(a)>0} + nE(Y1)I{cn(a)=0} = φ(a).

Thus, P(Y1 + · · · + Yn ≥ φ(a)) = 1, which leads to P(S < φ(a)) ≤ a by setting

Xi = F−1(V )I{V≤a} + YiI{V >a} where V ∼ U[0, 1] is independent of Y1, · · · , Yn. This

suggests m+(s) ≤ φ−1(a), i.e., φ−1(a) is potentially an optimal bound. In order to

prove the optimality of φ−1(a), more details of the functions Ha(x) and φ(a) are given

in the following lemma, whose proof is put in the appendix.

Lemma 4.6.5. Suppose F admits a monotone density.
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(i) If F has a decreasing density, then given a ∈ [0, 1), Ha(x) is decreasing and

differentiable for x ∈ [0, cn(a)].

(ii) If F has an increasing density, then given a ∈ [0, 1), Ha(x) is increasing and

differentiable for x ∈ [0, cn(a)].

(iii) If F has a decreasing density, then φ(a) = nE[F−1(Va)] where Va ∼ U[a+ (n−

1)cn(a), 1− cn(a)].

(iv) For any random variables U1, · · · , Un ∼ U[a, 1] and 0 ≤ a < b ≤ 1, we have

E(F−1(Ui)|A) < E[F−1(Vb)] for i = 1, · · · , n, where Vb is defined in (iii) and

A =
⋂n
i=1{Ui ∈ [a, 1− cn(b)]}.

(v) Suppose Y1, · · · , Yn ∼ F̃a with copula QF̃a
n , then P(Y1 + · · ·+ Yn ≥ φ(a)) = 1.

(vi) φ(a) is continuous and strictly increasing for a ∈ [0, 1).

Since φ(a) is continuous and strictly increasing, its inverse function φ−1(a) exists.

Put φ−1(t) = 0 if t < φ(0) and φ−1(t) = 1 if t > φ(1).

Theorem 4.6.6. Suppose the distribution F (x) has a decreasing density on its support

and φ(a) is defined in (4.52), or the distribution F (x) has an increasing density on

its support and φ(a) is defined in (4.55). Then we have m+(s) = φ−1(s).

Proof.

(a) We first prove m+(s) ≤ φ−1(s). Write a = φ−1(s). For i = 1, · · · , n, let

Y1, · · · , Yn ∼ F̃a with copula QF̃a
n and Xi = F−1(V )I{V≤a} + YiI{V >a} where

V ∼ U[0, 1] is independent of Y1, · · · , Yn. It is easy to check that Xi ∼ F and by

Lemma 4.6.5(v),

m+(s) ≤ P(S < φ(a)) = 1−P(S ≥ φ(a)) ≤ 1−P(Y1+· · ·+Yn ≥ φ(a))P(V > a) = a.

Thus m+(s) ≤ φ−1(s).
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(b) Next we prove m+(s) ≥ φ−1(s) for the case when F (x) has a decreasing density.

Suppose a = m+(s) < φ−1(s) = b and X = (X1, · · · , Xn) is an optimal coupling

for m+(s) such that {S ≥ s} = {Xi ≥ F−1(a)} for each i. Hence there exist

Ua,1, · · · , Ua,n ∼ U[a, 1] such that F−1(Ua,1)+· · ·+F−1(Ua,n) ≥ s with probability

1. By Lemma 4.6.5(iii) and (iv), we have

s ≤ E[
n∑
i=1

F−1(Ua,i)|A] < nE(F−1(Vb)) = φ(b) = s.

This leads to a contradiction. Thus m+(s) = φ−1(s).

(c) Finally we provem+(s) ≥ φ−1(s) for the case when F (x) has an increasing density.

In this case F−1(1) <∞.

Write a = m+(s) and let X = (X1, · · · , Xn) be an optimal coupling for m+(s)

such that {S ≥ s} = {Xi ≥ F−1(a)} for each i. It is clear that

P(S < F−1(a) + (n− 1)F−1(1) + ε|S ≥ s)

≥ P(Xi < F−1(a) + ε|Xi ≥ F−1(a)) > 0

for any ε > 0. Note that P(S < s|S ≥ s) = 0 and thus

s ≤ F−1(a) + (n− 1)F−1(1) = Ha(0).

This shows s ≤ Ha(0). The inequality s ≤ nψ(a) is given by Theorem 4.6.2.

Hence s ≤ φ(a) and a ≥ φ−1(s).

The proof of the above theorem suggests to construct the optimal correlation

structure as follows. In both cases, for a = φ−1(s) let Ua,1, · · · , Ua,n ∼ U[a, 1] with

copula QF̃a
n and U ∼U[0,1] is independent of (Ua,1, · · · , Ua,n). Define

Ui = Ua,iI{U≥a} + UI{U<a} (4.56)

for i = 1, · · · , n. Then

P(F−1(U1) + · · ·+ F−1(Un) < s) = φ−1(s).
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Remark 4.6.2.

1. The copula QF
n plays an important role for the bounds on both the convex

minimization problem (4.46) and the m+(s) problem for monotone marginal

densities. Note that QF
n may not be unique, hence the structure (4.56) may not

be unique. Also, on the set {S < s}, the dependence structure of X1, · · · , Xn

can be arbitrary.

2. The value φ−1(s) is accurate even when E(max{X1, 0}) = ∞. When the distri-

bution F̃a is n-CM, Theorem 4.6.6 gives the sharp bound Φ−1(s) in Theorem

4.6.2. The problem of M+(s) for monotone densities is also solved by the above

theorem.

3. Figure 4.3 shows the sketch of an optimal coupling for F with a decreasing

density, some a > 0 and cn(a) > 0. Here U1, · · · , Un ∼ U[0, 1] and P(F−1(U1) +

· · ·+ F−1(Un) < s) = φ−1(s).

(i) When Ui ∈ [0, a], Ui is arbitrarily coupled to all other Uj in Part A.

(ii) When Ui ∈ [a, a + (n − 1)cn(a)], Ui is coupled to other Uj, j 6= i in Part

B and Part D. For j 6= i, either Ui − a = (n− 1)(1− Uj) or Uj = Ui.

(iii) When Ui ∈ [a + (n − 1)cn(a), 1 − cn(a)], Ui is coupled to all other Uj,

j 6= i in Part C, and F−1(U1)+ · · ·+F−1(Un) = φ(a). It is the completely

mixable part.

(iv) When Ui ∈ [1 − cn(a), 1], Ui is coupled to other Uj, j 6= i in Part B. For

j 6= i, Uj − a = (n− 1)(1− Ui).

4. Figure 4.4 shows the real values of m+(s) in Theorem 4.6.6 and the lower bound

ψ−1(s/n) in Theorem 4.6.2 for the Pareto(2,1) distribution. Note that the real

values are equal to the bound in Embrechts and Puccetti [35], which suggests

that the bound in [35] may be sharp for Pareto distributions.
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Figure 4.3: Sketch of the optimal coupling
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Figure 4.4: m+(s) and ψ−1(s/n) for a Pareto distribution
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For the distribution F with density p(x), we say p(x) is tail-monotone, if for some

b ∈ R, p(x) is decreasing for x > b or p(x) is increasing for x < b. We are particularly

interested in the case when p(x) is tail-decreasing (p(x) is decreasing for x > b) since

the risks are usually positive random variables. Note that for most risk distributions

the tail-decreasing property is satisfied. For example, the Gamma distribution with

shape parameter α for α > 1 and the F-distribution with d1, d2 degrees of freedom

for d1 > 2 do not have a monotone density, but they have a tail-decreasing density.

In the VaR problems, one is concerned with the tail behavior of the distribution.

From the proof of Theorem 4.6.6, information on the left tail of F does not play any

role in the calculation of m+(s). Based on this observation, we have the following

theorem, which solves m+(s) for F with tail-decreasing density and some large s.

Theorem 4.6.7. Suppose the density function of F is decreasing on [b,∞), and φ(a)

is defined in (4.52). Then for s ≥ φ(F (b)), m+(s) = φ−1(s).

Proof. Since the density function of F is decreasing on [b,∞), the conditional distri-

bution F̃F (b) has a decreasing density. Note that Ha(x), cn(a) and φ(a) only depend

on the conditional distribution F̃a, hence they are well defined for F (b) ≤ a ≤ 1.

Since s ≥ φ(F (b)), φ−1(s) ≥ F (b) and the conditional distribution F̃φ−1(s) has a

decreasing density. Theorem 4.6.7 follows from the same arguments as in the proof of

Theorem 4.6.6, where no condition on the distribution of Xi on {Xi < F−1(φ−1(s))}

is used.

4.6.3 The worst Value-at-Risk scenarios

The Value-at-Risk (VaR) is an important risk measure in risk management; see Em-

brechts and Puccetti [37] and references therein. Recall that VaR is the α-quantile of

the distribution, i.e.,

VaRα(S) = F−1
S (α) = inf{s ∈ R : FS(s) ≥ α}, (4.57)
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where FS is the distribution of S. Typical values of the level α are 0.95, 0.99 or

even 0.999. As mentioned in Embrechts and Puccetti [37], banks are concerned

with an upper bound on VaR(
∑d

i=1Xi) when the correlation structure between X =

(X1, · · · , Xd) is unspecified.

Finding the bounds on the VaR is equivalent to finding the inverse function of

m+(s) (note that m+(s) is non-decreasing). Using Theorem 4.6.6 and Theorem

4.6.7, we are able to obtain the explicit value of the upper bound on the VaR,

namely, the worst Value-at-Risk. The proof follows directly from the fact that

supXi∼F,1≤i≤n VaRα(S) = m−1
+ (α) when m+(s) is continuous and strictly increasing.

Theorem 4.6.8. Suppose that the density function of the marginal distribution F is

decreasing on [b,∞) and φ(a) is defined in (4.52). Then for α ≥ F (b), the worst VaR

of S = X1 + · · ·+Xn is

sup
Xi∼F,1≤i≤n

VaRα(S) = m−1
+ (α) = φ(α). (4.58)

In particular, (4.58) holds for all α if the marginal distribution F has decreasing

density on its support and an optimal correlation structure is given by (4.56).

For arbitrary marginal distributions F1, · · · , Fn, Theorem 4.6.2 gives an upper

bound for the worst-VaR problem as follows.

Corollary 4.6.9. For arbitrary marginal distributions,

sup
Xi∼Fi,i=1,··· ,n

VaRα(S) ≤ m−1
+ (α) ≤ Φ(α), (4.59)

where Φ(α) is defined in Section 2.

Figure 4.5 shows the explicit worst-VaR, best-VaR and VaR in the independent

case for the distribution Pareto(3,2), n = 3 and 0.9 ≤ α ≤ 0.995.

4.6.4 Examples

Here we give some examples to show how to compute m+(s).
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Figure 4.5: Worst and best VaR for a Pareto distribution

Example 4.6.1. Assume that X ∼ U[0, 1], the uniform distribution on [0,1]. Then

p(x) = 1, F (x) = x, x ∈ [0, 1], F−1(t) = t, t ∈ [0, 1].

Further we have cn(a) = 0 for all 0 ≤ a ≤ 1 and φ(t) = nψ(t) = nE(X|X > t) = n(1+t)
2

for t ∈ [0, 1]. Thus

m+(s) = φ−1(s) = 1 ∧
(

2s

n
− 1

)
+

.

This result indeed is the same as that in Rüschendorf [85]. One optimal correlation

structure is also given in Rüschendorf and Uckelmann [87].

Example 4.6.2. Assume that X ∼ Pareto(α, θ), α > 1, θ > 0 with density function

p(x) = αθαx−α−1, x ≥ θ.

Then

F (x) = 1−
(x
θ

)−α
, x ≥ θ, F−1(t) = θ(1− t)−1/α, t ∈ [0, 1].

Further we have that cn(a) is the smallest c ∈ [0, 1
n
(1− a)] such that

α

α− 1
((1−a−(n−1)c)1−1/α−c1−1/α) ≥ (

1

n
(1−a)−c)((n−1)(1−a−(n−1)c)−1/α+c−1/α).
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The numerical values of m+(s) for two Pareto distributions and n = 3 are plotted in

Figure 4.6. A possible correlation structure is given in (4.56).
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Figure 4.6: m+(s) for Pareto distributions

Example 4.6.3. Assume that X ∼ Gamma(α, λ), α ≤ 1, λ > 0 with density function

p(x) =
λα

Γ(α)
xα−1e−λx.

Then

F (x) = γ(α, λx), x > 0,

where γ(α, t) =
∫ t

0
1

Γ(α)
xα−1e−λxdx is the lower incomplete Gamma function. Further

cn(a) is the smallest c ∈ [0, 1
n
(1− a)] such that

α

λ
(γ(α+ 1, λF−1(1− c))− γ(α+ 1, λF−1(a+ (n− 1)c))) ≥ (

1

n
(1− a)− c)Ha(c),

which can be calculated numerically. The numerical values of m+(s) for two Gamma

distributions and n = 3 are plotted in Figure 4.7. A possible correlation structure is

given in (4.56).
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Figure 4.7: m+(s) for Gamma distributions

4.7 Technical Proofs

Proof of Proposition 4.2.2. (i) and (ii) are obvious. For (iii), let S = (0, · · · , 0︸ ︷︷ ︸
q−p

, 1, · · · , 1︸ ︷︷ ︸
p

),

σ be a random permutation uniformly distributed on the set of all q-permutations,

and the random vector X = (X1, · · · , Xq) = σ(S). We can check that Xi ∼ B(1, r)

for i = 1, · · · , q and X1 + · · · + Xq = p is a constant. Hence B(1, r) is q-CM. The

rest part of (iii) follows from Proposition 4.2.1(5). (iv) is an application of Theorem

4.4.1. The uniform distribution in (v) and the Beta distribution in (vi) have mono-

tone densities, hence (v) and (iv) follow from Theorem 4.4.2. The Beta distribution

in (vii) and the triangular distribution in (viii) have concave densities, then (vii) and

(viii) follow from Theorem 4.4.8.

Proof of Lemma 4.4.4. (4.12) reads as

N × A(−N) + · · ·+ 1× A(−1) = 1× A(1) + · · ·+ dN × A(dN). (4.60)
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The left-hand side of (4.60) is

N × A(−N) + · · ·+ 1× A(−1) ≤ N × A(−N) +
(N − 1)N

2
× A(−N + 1)

≤
(
N +

N(N − 1)

2

2d

d+ 1

)
A(−N)

=
N(dN + 1)

d+ 1
× A(−N).

The right-hand side of (4.60) is

1× A(1) + · · ·+ dN × A(dN)

≥ (dN − d+ 1)(dN − d+ 2)

2
× A(dN − d+ 1)

+(dN − d+ 2)× A(dN − d+ 2) + · · ·+ dN × A(dN) (4.61)

≥ N(dN + 1)

d+ 1
× (1× A(dN − d+ 1) + 2× A(dN − d+ 2) + · · ·+ d× A(dN)).(4.62)

The last inequality is due to the fact that A(dN − d + 1) ≥ · · · ≥ A(dN), the

summation of all coefficients in (4.61) equals that in (4.62) and for each i and the

summation of all coefficients from term A(dN − d+ 1) to A(dN − d+ i) in (4.60) is

greater than that in (4.62). Therefore we get

1× A(dN − d+ 1) + 2× A(dN − d+ 2) + · · ·+ d× A(dN) ≤ A(−N),

and thus CN(A) ≥ 0.

Proof of CN−1(Ā) ≥ 0. Note that Ā(−N + 1) = A(−N + 1) −
∑d−1

i=1 iA(dN − i).

Comparing the left-hand side and right-hand side of (4.60), we get

N × A(−N) +
N(N − 1)

2
× A(−N + 1)

≥ LHS of (4.60)

= RHS of (4.60)

≥ (dN − d+ 1)(dN − d+ 2)

2
× A(dN − d+ 1) +

d∑
i=2

(dN − d+ i)× A(dN − d+ i).
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Plugging CN(A) = 0 in and after simplification (here we divide both sides by N − 1,

hence N ≥ 2 is needed), the above inequality reads as

N × A(−N + 1) ≥ 2× A(dN − 1) + · · ·+ 2(d− 2)× A(dN − d+ 2)

+
(d2N − d2 + 3d− 2)(N − 1)

2
× A(dN − d+ 1).

Since A(dN − 1) ≤ A(dN − 2) ≤ · · · ≤ A(dN − d+ 1), we can conclude

A(−N + 1) ≥ 2d

d− 1
[1× A(dN − 1) + · · ·+ (d− 1)× A(dN − d+ 1)].

This leads to

Ā(−N + 1) ≥ A(−N + 1)−d− 1

2d
A(−N + 1) ≥ d+ 1

2d
A(−N + 2) =

d+ 1

2d
Ā(−N + 2).

By Lemma 4.4.4 we know (Ā, N − 1) satisfies (ii).

Proof of Corollary 4.5.9. In the following we let Pn be the unique solution to

logP =
nP − n

n+ P − 1
, P > 1. (4.63)

One can show (4.63) has unique solution other than P = 1 by the following argument.

Let f(x) = log x − n + n2

n+x−1
. Then f ′(x) = 1

x
− n2

(n+x−1)2
, hence f ′(x) only has one

root other than x = 1. This shows f(x) = 0 has at most one root other than x = 1.

Note that f(2) < 0 and f(en) > 0, thus it has unique root other than x = 1.

Let cn = 1
Pn+n−1

(Pn = 1−(n−1)cn
cn

) and plug it in (4.63), we get cn is the unique

solution to (4.35).

For any 0 < η < 1,

f(ηen) = log η +
n2

n+ ηen − 1
< 0

for large n, hence there is a solution to f(x) = 0 between ηen and en. Since Pn is the

solution, we know Pn ∼ en, therefore cn = 1
Pn+n−1

∼ e−n.
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Furthermore, it follows from log(Pn/e
n) = −n2/(n+ Pn − 1) and Pn ∼ en that

Pn/e
n = 1− n2

Pn + n− 1
+

n4

2(Pn + n− 1)2
+O(

n6

(Pn + n− 1)3
)

= 1− n2

en
+
n2(Pn + n− 1− en)

en(Pn + n− 1)
+

n4

2(Pn + n− 1)2
+O(

n6

e3n
)

= 1− n2

en
+
n2(−n2 + n− 1)

e2n
+O(

n6

e3n
) +

n4

2e2n
+O(

n6

e3n
) +O(

n6

e3n
)

= 1− n2e−n +
−n4 + 2n3 − 2n2

2
e−2n +O(n6e−3n).

Consequently

cn = e−n + (
1

Pn + n− 1
− e−n)

= e−n +
en − (Pn + n− 1)

en(Pn + n− 1)

= e−n + (n2 − n+ 1)e−2n +O(n4e−3n),

and

Λn =n

∫ cn

0

x(1− (n− 1)x)n−1dx+ (1− ncn)cn(1− (n− 1)cn)
n−1

=n

∫ cn

0

x(1− (n− 1)x)n−1dx+ cn[1− ((n− 1)2 + n)cn +O(n3c2n)]

=n

∫ cn

0

x(1− (n− 1)x)n−1dx+ cn − (n2 − n+ 1)c2n +O(n3c3n).

=
n

2
c2n +O(n3c3n) + cn − (n2 − n+ 1)c2n +O(n3c3n).

=e−n +
n

2
e−2n +O(n4e−3n).

Proof of Proposition 4.2.3.

1. The case n = 1 is trivial. For n ≥ 2, by the definition of JM distributions, there

exist X1 ∼ F1, · · · , Xn ∼ Fn such that Var(X1 + · · ·+Xn) = 0. Since

√
Var(X1 +X2 + · · ·+Xn) ≥

√
Var(X1)−

√
Var(X2 + · · ·+Xn)

≥ σ1 −
n∑
i=2

σi,
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we have 2σ1 −
∑n

i=1 σi ≤ 0. Similarly, we can show that 2σk −
∑n

i=1 σi ≤ 0 for

any k = 1, · · · , n, i.e., (4.7) holds.

2. We only need to prove the “⇐” part for n ≥ 2. Without loss of generality, we

assume σ1 ≥ σ2 ≥ · · · ≥ σn. Let X = (X1, · · · , Xn) be a multivariate Gaussian

random vector with known marginal distributions F1, · · · , Fn and an unspecific

correlation matrix Γ. We want to show there exists a correlation matrix Γ such

that Var(X1 + · · ·+Xn) = 0.

Let T be the correlation matrix of (X2, · · · , Xn) and Y = X2 + · · ·+Xn. Define

f(T ) =
√

Var(X1) −
√

Var(Y ). Obviously f(T ) is a continuous function of T

with canonical distance measure. It is easy to check that f(T ) = σ1−
∑n

i=2 σi ≤

0 when X2 = σ2Z + µ2, · · · , Xn = σnZ + µn for some Z ∼ N(0, 1). Since

σ1 ≥ σ2 ≥ · · · ≥ σn, we also have f(T ) = σ1 − |
∑n

i=2(−1)iσi| ≥ 0 when

Xi = (−1)iσiZ +µi for i = 2, · · · , n. Hence there exists a correlation matrix T0

such that f(T0) = 0. With the correlation matrix of (X2, · · · , Xn) being T0, we

define X1 = −Y +E(Y )+µ1. Hence X1 ∼ N(µ1, σ
2
1) and Var(X1+· · ·+Xn) = 0,

which imply that F1, · · · , Fn are JM.

Proof of Proposition 4.6.4.

1. By (a) in Section 3.1, for any i 6= j, Ui ∈ [0, c] ⇒ Uj ∈ [1− (n− 1)c, 1]. Hence

Ai := {Ui ∈ [0, c]} ⊆ {Uj ∈ [1− (n− 1)c, 1]} =: Bj

and P(Ai ∩ Aj) = 0. As a consequence,
⋃
i6=j Ai ⊆ Bj. Note that P(

⋃
i6=j Ai) =

(n− 1)c = P(Bj). Thus IS
i6=j Ai

= IBj
a.s. and

ISn
i=1 Ai

= IAj∪Bj
= I{Uj∈[0,c]∪[1−(n−1)c,1]} a.s.

which imply that I{Uj∈(c,1−(n−1)c)} = I(Sn
i=1 Ai)c a.s. for j = 1, · · · , n.
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2. We only prove the case when F has an increasing density. When cn = 0, (4.49)

follows from the definition of QF
n . Next we assume cn > 0. Write Dj = Aj ∪Bj

and Xj = F−1(Uj), Uj ∼ U[0,1] for j = 1, · · · , n. First note that by condition

(b) in Section 3.1, for any j = 1, · · · , n, F−1(U1) + · · ·+ F−1(Un) is a constant

on the set Dc
j . This constant equals its expectation, which is

E(F−1(U1) + · · ·+ F−1(Un)|Dc
j)

= nE(F−1(U1)|Dc
1)

=
n

1− ncn

∫ 1−(n−1)cn

cn

F−1(x)dx

=
n

1− ncn

∫ 1
n

cn

F−1(x)dx+
n

1− ncn

∫ 1−(n−1)cn

1
n

F−1(x)dx

=
n

1− ncn

∫ 1
n

cn

F−1(x)dx+
n

1− ncn

∫ 1
n

cn

F−1(1− (n− 1)t)d(n− 1)t

=
n

1− ncn

∫ 1
n

cn

H(x)dx

= H(cn).

The last equality holds because (4.45) and∫ 1
n

cn

H(x)dx = (
1

n
− cn)H(cn) for cn > 0.

Therefore, almost surely

S = F−1(U1) + · · ·+ F−1(Un)

=
n∑
i=1

F−1(Ui)ID1 +
n∑
i=1

F−1(Ui)IDc
1

=
n∑
i=1

F−1(Ui)ISn
j=1 Aj

+H(cn)IDc
1

=
n∑
i=1

F−1(Ui)(
n∑
j=1

IAj
) +H(cn)IDc

1

=
n∑
j=1

[F−1(Uj) + (n− 1)F−1(1− (n− 1)Uj)]IAj
+H(cn)IDc

1

=
n∑
j=1

H(Uj)IAj
+H(cn)IDc

1
.
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Since cn ≤ 1/n and the sets A1, · · · , An and Dc
1 are disjoint, we have

P(
n∑
j=1

H(Uj)IAj
+H(cn)IDc

1
< t)

= nP(H(U1)I{U1≤cn} < t) + P(H(cn)IDc
1
< t)

= P(H(U1/n)I{U1≤ncn} < t) + P(H(cn)I{U1>ncn} < t)

= P(H(U1/n)I{U1≤ncn} +H(cn)I{U1>ncn} < t).

Hence there exists a U ∼U[0,1] such that

n∑
j=1

H(Uj)IAj
+H(cn)IDc

j
= H(U/n)I{U≤ncn} +H(cn)I{U>ncn}.

Proof of Lemma 4.6.5.

(i) Under the assumption of F, F−1(x) is convex and differentiable. Thus Ha(x)

is convex and differentiable. The definition of cn(a) shows that the average of

Ha(x) on [cn(a),
1
n
(1− a)] is Ha(cn(a)) if 0 < cn(a) <

1−a
n

, namely

1

(1− a)− cn(a)

∫ 1
n

(1−a)

cn(a)

Ha(t)dt = Ha(cn(a)).

With Ha(x) being convex, we have H ′
a(cn(a)) ≤ 0 and so H ′

a(x) ≤ 0 on [0, cn(a)].

Here H ′
a(x) denotes ∂Ha(x)/∂x. Note that for n > 2, H ′

a(
1−a
n

) = ((n − 1)2 −

1)(F−1)′(1−a
n

) > 0 implies∫ 1
n

(1−a)

c

Ha(t)dt ≥ (
1

n
(1− a)− c)Ha(c)

for some c < 1−a
n

, thus cn(a) <
1−a
n

always holds. For n = 2, H ′
a(x) ≤ 0 on

[0, 1−a
n

] since H ′
a(

1−a
n

) = 0 and H is convex.

(ii) It follows from similar arguments as in (i).

(iii) Suppose cn(a) > 0. By the continuity of Ha(x) w.r.t. x and (4.51), we know

that cn(a) satisfies∫ 1
n

(1−a)

cn(a)

Ha(t)dt = (
1

n
(1− a)− cn(a))Ha(cn(a)).
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Note that for any c ∈ [0, 1
n
(1− a)],∫ 1

n
(1−a)

c

Ha(t)dt =

∫ 1
n

(1−a)

c

(n− 1)F−1(a+ (n− 1)t)dt+

∫ 1
n

(1−a)

c

F−1(1− t)dt

=

∫ a+n−1
n

(1−a)

a+(n−1)c

F−1(t)dt+

∫ 1−c

1− 1
n

(1−a)
F−1(t)dt

=

∫ 1−c

a+(n−1)c

F−1(t)dt.

Thus it follows from the definition of cn(a) that Ha(cn(a)) = nE[F−1(Va)]. For

the case cn(a) = 0, it is obvious that ψ(a) = nφ(a) = nE[F−1(Va)].

(iv) Note that in a given probability space, for any measurable set B with P(B) > 0

and continuous random variable Z with cdf G, we have

E(Z|B) ≤ E[Z|Z ≥ G−1(1− P(B))].

To see this, denote the conditional distribution of Z on B by G1 and the condi-

tional distribution on {Z ≥ G−1(1− P(B))} by G2. Then we have

G2(x) =
P(Z ≤ x,G(Z) ≥ 1− P(B))

P(B)

=
max{G(x)− 1 + P(B), 0}

P(B)

≤ P(Z ≤ x,B)

P(B)
= G1(x), x ∈ R, (4.64)

which implies that for U ∼U[0,1],

E(Z|B) = E[G−1
1 (U)] ≤ E[G−1

2 (U)] = E[Z|Z ≥ G−1(1− P(B))]. (4.65)

Since A =
⋂n
i=1{Ui ∈ [a, 1 − cn(b)]}, we have P(A) ≥ 1 − ncn(b)

1−a > 0 and

Ui ≤ 1− cn(b) on A. By defining Z = F−1(Ui)I{Ui≤1−cn(b)}+F−1(a)I{Ui>1−cn(b)},
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it follows from (4.65) that

E[F−1(Ui)|A] = E[Z|A]

≤ E[Z|Z ≥ F−1(1− cn(b)− (1− a)P(A))]

≤ E[F−1(Ui)|Ui ∈ [1− cn(b)− (1− a)P(A), 1− cn(b)]]

≤ E[F−1(Ui)|Ui ∈ [a+ (n− 1)cn(b), 1− cn(b)]]

< E[F−1(Ui)|Ui ∈ [b+ (n− 1)cn(b), 1− cn(b)]]

= E(F−1(Vb)). (4.66)

(v) It follows from (i), (ii) and the arguments in Remark 4.6.1.

(vi) We first prove the case when F has a decreasing density. Since Ha(x) is convex

w.r.t. x and differentiable w.r.t. a, the definition of cn(a) implies that cn(a) is

continuous. Hence φ(a) = nE[F−1(Va)] is continuous.

Suppose Ua,1, · · · , Ua,n ∼ U[a, 1] with copulaQF̃a
n . Then F−1(Ua,1), · · · , F−1(Ua,n) ∼

F̃a and have copula QF̃a
n too. By (v), we have

F−1(Ua,1) + · · ·+ F−1(Ua,n) ≥ φ(a). (4.67)

Thus from (4.66) and (4.67) we have

φ(a) ≤ E[
n∑
i=1

F−1(Ua,i)|A] < nE(F−1(Vb)) = φ(b).

Next we prove the case when F has an increasing density. The continuity of

cn(a) comes from the same arguments as above. By definition, Ha(0) and ψ(a)

are continuous and increasing functions of a. So we only need to show that

when cn(a) approaches 0, Ha(0)− ψ(a) approaches 0. Suppose that as a↗ a0,

cn(a) → 0 and cn(a) 6= 0 for a0 − ε < a < a0 and ε > 0. Then∫ 1
n

(1−a)

0

Ha(t)dt→
1

n
(1− a0)Ha0(0),
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which implies that

ψ(a) =

∫ 1

a

1

1− a
F−1(a+ t)dt =

n

1− a

∫ 1
n

(1−a)

0

Ha(t)dt→ Ha0(0)

as a↗ a0. Together with the continuity ofHa(0)−ψ(a) we knowHa(0)−ψ(a) →

0 as a→ a0.
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