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SUMMARY

This thesis addresses three topics in the area of statistics and probability,
with applications in risk management. First, for the testing problems in the high-
dimensional (HD) data analysis, we present a novel method to formulate empirical
likelihood tests and jackknife empirical likelihood tests by splitting the sample into
subgroups. New tests are constructed to test the equality of two HD means, the coef-
ficient in the HD linear models and the HD covariance matrices. Second, we propose
jackknife empirical likelihood methods to formulate interval estimations for impor-
tant quantities in actuarial science and risk management, such as the risk-distortion
measures, Spearman’s rho and parametric copulas. Lastly, we introduce the theory of
completely mixable (CM) distributions. We give properties of the CM distributions,
show that a few classes of distributions are CM and use the new technique to find
the bounds for the sum of individual risks with given marginal distributions but un-
specific dependence structure. The result partially solves a problem that had been a
challenge for decades, and directly leads to the bounds on quantities of interest in risk
management, such as the variance, the stop-loss premium, the price of the European

options and the Value-at-Risk associated with a joint portfolio.

xii
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CHAPTER I

INTRODUCTION

I would use the word amazing to describe what I feel about the rapid and fertile
development of probability and statistics during the recent few decades. As a person
who loves mathematics as well as the real world, I long for the research with both
theoretical depth in mathematics and practical influence in our lives. I found those
interests perfectly combined in the study of statistics and risk management, from
which this dissertation is finally generated.

The dissertation addresses three topics in the area of non-parametric statistical
inference, multivariate dependence structures and their applications in risk manage-
ment. As such, it consists of three main chapters, each of which addresses one topic.

Chapter II is dedicated to new empirical likelihood tests in high-dimensional data
analysis. Four different classic test problems in the high-dimensional framework are
considered: testing the equality of the mean of two samples (Section 2.2), testing the
coefficient in a linear model (Section 2.3), testing the covariance matrix and testing
the banded structure of the covariance matrix (Section 2.4).

Chapter III is dedicated to the applications of the jackknife empirical likelihood
interval estimation to some quantities of interest in risk management, including the
risk-distortion measures (Section 3.2), Spearman’s rho (Section 3.3) and parametric
copulas (Section 3.4).

Chapter IV is dedicated to the theory of a new class of probability distributions,
called the completely mizable distributions. The definition, properties and main the-
orems about this new class are introduced. The new technique developed with this

concept can be used to solve a series of problems in the Fréchet class and answer some
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questions in risk management.

This chapter, Chapter I, serves as the introduction. The existing statistical meth-
ods of likelihood ratio functions are reviewed in Section 1.1. The theory of copulas
is introduced in Section 1.2. The problems of the Fréchet class are introduced in

Sections 1.3.

1.1  Empirical likelihood methods

1.1.1 Parametric likelihood ratio

The parametric likelihood ratio function has become a common knowledge of statistics
graduate students nowadays. Let us first review the definition of the likelihood ratio
function. Throughout this section, let X = (Xi,---,X,) be a sample of n i.i.d.

observations from a distribution F; on RP, and define the likelihood function

n

L(FIX) = [ (X

i=1
for any distribution function F', where f(X;) is the probability mass or density func-
tion of F' at the point X, depending on the context. Since we are interested in the
likelihood ratio, the case of having a probability density and the case of having a
probability mass are the treated the same, as long as both the numerator and the
denominator are using the same scale.

When we are interested in a parametric family of distributions {F'(6) : 0 € ©},
where © the set of parameters theta, it is called a parametric model. Suppose © is a
vector space, and let ©y be a subspace of ©. Define the likelihood ratio function

_ sup{L(F(0)|X): 0 € O}
Al©o) = sup{L(F(A)|X): 6 €O}

The Wilks” Theorem, presented by Wilks [109], is considered one of the most
important results in the likelihood ratio problems. The theorem states that under

Hy : 0 € ©y and mild regularity conditions,

~2log A(6y) > x;
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where Xf] is the chi-square distribution with ¢ degrees of freedom and ¢ = dim©® —
dim©y. In particular, if ©¢ is the set of one point, i.e. the real value of 6, then
—2log A(Oy) % Xiimo-

Likelihood methods are very effective as they can be used to find efficient estima-
tors and to construct tests with good power properties. Since the asymptotic limit
of —2log A(f) does not depend on the underlying model, the method has great con-
venience in many cases. A likelihood ratio test is a test based on the statistic A(6),
to test Hy : 6 € ©g against H, : 6 € © \ ©y. By Wilks” Theorem, a test based on
[(0) := —2log A(f) can be easily constructed by rejecting Hy when [(6) exceeds the

threshold x7(1 — ), where x2(1 — a) is the 1 — a quantile of x.
1.1.2 Empirical likelihood (EL) methods

The non-parametric version of the likelihood ratio function was first by introduced by
Owen [71, 72]. First (and throughout Chapter II and Chapter III, unless otherwise
notified), let us define the empirical distribution function (EDF) of X as F,(z) =
%2?:1 I(X; < x).

As a well-known fact, F}, is the nonparametric maximum likelihood estimator for

the true distribution function Fj, i.e.
LFIX)< L(F,|X)=n"" (1.1)

for any distribution F' and the equality holds only if F' = F,,. The study on the EDF
has been extensive; for more information we refer to Shorack and Wellner [94] and
references therein.

(1.1) gives us an opportunity to build an analog to the parametric likelihood ratio
function. Let F be the set of all distribution functions on RP (recall that X; takes

value in RP), and F; be a subset of F. Then we can define the empirical likelihood
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ratio function

_ sup{L(F|X): F e Fo}

AFo) = sup{L(F|X): FeF}
_ sup{L(F|X): F e Fo}
B L(F,|X)

= n"sup{L(F|X): F € Fo}.

Now suppose we are interested in a quantity § = T'(F'), where T is a functional of
F. Let Fo(6) be the set of distributions F' satisfying T'(F') = 6. In this case, define

the empirical likelihood ratio function
R(0) = A(Fy(0)) = n"sup{L(F|X) : T(F) = 0}.

It is obvious that {L(F|X) : T(F) = 6} is only maximized when F' is supported on

the observations Xy, -+, X,. Then R(f) can be written as
R(0) = sup{] [(np:) : pi = £(X0), T(F) = 6}.
i=1

It is then straightforward to investigate the limit of R(f). As one would expect
from Wilks’” Theorem, —2log R(f) should go to a chi-square distribution, with the
number of degrees of freedom depending on the difference between Fy and F. This
turns out to be true when T is a linear functional of F'. In particular, and as a
good example, for the mean problem T'(F) = E(X;), Owen [72] gives the following

theorem:

Theorem 1.1.1. Let Xy,..., X, be independent random vectors in RP with common
distribution Fy having mean iy and finite variance covariance matriz Vo of rank g > 0.

Then (1) converges in distribution to a XZ random variable as n — oo, where

[(p10) = —21log R(po).

Remark 1.1.1. Note that in the case § = T'(F') = E(X;), we have

R(O) =sup{][(np:) : 1 2 0,-+ ,pn 20, pi=1,> pX; =0} (1.2)
=1 =1
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It is seen that @ should lie in the convex hull of the sample (X7, - -, X,,) to ensure the
existence of a solution to the optimization (1.2). In general, when computing R(6),

f should always lie in a convex hull formed by the sample.

The optimization problem in (1.2) can be done by the Lagrange multiplier method.
In program R, there is a package emplik with which people can easily calculate the
likelihood ratio function with given sample. In this thesis, we call a technique using
the empirical likelihood in statistical testing and estimation an empirical likelihood
(EL) method. For details and more information, we refer to Owen [71, 72, 73].

As another significant contribution to the empirical likelihood methods, Qin and
Lawless [82] introduced the estimating equations to the empirical likelihood methods,
making the methods more flexible with different types of model settings. Suppose we
are interested in a parameter § € R? associated with the underlying distribution F'
through estimating equations Elg(X1;6)] = 0, where E[g(+)] is a d-dimensional linear
functional of the underlining distribution. Here d and ¢ are the essential dimension
of the functional g and parameter 6 respectively, i.e. the components in g or 6 are
generated by a set of d or ¢ linearly independent components. The empirical likelihood

function with estimating equations is defined as

L(O) =sup{[ [ pi: D pig(X:i,0) =0,p; >0,> pi=1}. (1.3)
1=1 =1 =1

Let 6 maximize L(f). Qin and Lawless [82] showed that under mild conditions,
—2log(L(6)/L(6)) % X2, where r = d V q and 6, is the true value of 6.

As a special case, if we are interested in the mean 6, then we can choose G(z;6) =
x — 0 and we will get R(6) defined in (1.2).

Looking into the proofs in Owen [71, 72], in order to guarantee that R(6) converges

to a chi-square distribution, one will need the following conditions for some matrix

PN
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(L1) CLT,

(L2) LLN,

1 n
- E Q(Xi;g)g(Xﬁ@)T 5 3.
n

i=1

(L3) Controlled maximum,

max g(X;;0) = o,(v/n).

1<i<n

Fortunately, since g(X;; ), ..., g(X,;0) areii.d., (L1)—(L3) are guaranteed by a finite
covariance matrix ¥ of g(X;;6). However, this inspired us that as long as (L1)—(L3)
are satisfied, Wilks” Theorem holds. Thus, the result can be applied with the method
of resampling, where the sample is no longer i.i.d., but (L1)—(L3) still hold. Based on
this observation, we will introduce the jackknife empirical likelihood methods later.
The merits of the empirical likelihood include: the shape of confidence regions
is model-free as it is automatically determined using only the data; the estimation
of the asymptotic variance is avoided; one can easily incorporate information using
estimating equations; it is Bartlett correctable (see DiCiccio, Hall and Romano [29]).
The method of empirical likelihood has been extensively studied in the past few
decades. We refer to the recent review papers Chen and Van Keilegom [17] for a
review of empirical likelihood in regression, and Chen, Peng and Qin [15] and Hjort,
McKeague and Van Keilegom [45] for empirical likelihood in high-dimensional data

analysis.
1.1.3 Jackknife empirical likelihood (JEL) methods

One notable limitation of the empirical likelihood method is that its works poorly

with a nonlinear functional 7.

Example 1.1.1. Assume p = 1 and we are interested in § = E(X; — EX)3. We

cannotywriteddsdang(X;; 0) in this case.
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In general, the Wilks” Theorem does not hold when an empirical likelihood method
is applied to nonlinear functionals. To overcome this difficulty, Jing, Yuan and Zhou
[47] proposed a jackknife empirical likelihood (JEL) method for U-statistics to deal
with nonlinear functionals.

The method of jackknife is a resampling method to reduce the variance of a
statistic. The new sample, called the jackknife sample, is constructed by taking away
one of the observations at each time. The jackknife sample is no longer independent,
but under some mild conditions they are asymptotically i.i.d., hence (L1)—(L3) in
a empirical likelihood method can be satisfied. See, e.g., Shao and Tu [93] for an
introduction to the method of jackknife.

For a U-statistic, the procedure in Jing, Yuan and Zhou [47] is to construct a
jackknife sample of the statistic, and then apply the standard empirical likelihood

method for the mean of i.i.d. observations to the jackknife sample:

0) =sup{[[(wp:) : p1 >0, ,pu >0, pi=1, sz (X;0) = 0}.
=1 =1

Here the function ¢g(X;;6) in (1.3) is replaced by Z;(X;60), where (Zy,---,2,) is a
d-dimensional jackknife sample, with mean 0. Z;,--- , Z,, are no longer independent,

but they could be asymptotically i.i.d to obtain Wilks’ Theorem,
~2log R(6h) - x2,
where r = d V q.

Example 1.1.2. For p=1, § = E(X; — EX})3, let

0, 1ZX_—ZXk
=1

and

A 1
O = n—1ZX’_n—1ZXk )2,

i#] k#j
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Define the jackknife sample as Z; = nb, — (n— l)ém, then

R(O) =sup{][(np:) :p1 20, . pu > 0.) pi=1,Y piZ—0=0}
=1 =1

i=1

and R(6) <, X3 under some mild regularity conditions.

Inspired by the conditions used in the standard empirical likelihood method, to
prove that the JEL version of Wilks’ Theorem holds for any statistic, not necessarily

a U-statistic, one needs to verify that the jackknife sample satisfies (R1)—(R3):

(R1) CLT,

(R2) LLN,

! > zzl By
n i=1

(R3) Controlled maximum,

max Z; = o,(v/n).

1<i<n

Theorem 1.1.2. (Wilks’ Theorem for JEL.) Assuming (R1)-(R3), then
—2log R(fh) - 2
where Oy s the true value of @ and r =dV q.

Proof follows from standard arguments in empirical likelihood, see e.g. Owen [72].
In this thesis, the above technique will be frequently used. In Chapter II, we will
investigate the use of the empirical likelihood in high-dimensional testing problems.

In Chapter III, we will discuss the applications of the jackknife empirical likelihood

in risk management.
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1.2 Copulas

A copula is a multivariate function which characterizes the dependence structure
among random variables without the information of the marginal distributions. The
technique of using copulas has been very popular in statistics and actuarial science,
see Nelsen [69] for an introduction to copulas. The concept of copulas has become a
common knowledge in the modern research related to dependence structures.

Over the last few decades, researchers in economics, financial mathematics and
actuarial science have introduced results related to the dependence structure in their
own respective fields of interest. Below we list a few examples of multivariate depen-

dence in finance and insurance.
1. Pricing financial derivatives written on several assets.
2. Structured financial products, such as the CDOs.
3. Portfolio selection and hedging.
4. Best and worst scenarios in risk management.
5. Time series analysis and econometrics.

The dependence itself is known to be mathematically mysterious and it can be danger-
ous if misplaced. Many people believe that the methodology of applying the Gaussian
copula to model the dependence is one of the reasons behind the global financial crisis

in 2008-2009; see the well-known article by Salmon [88].
1.2.1 Definition and Sklar’s Theorem

As the copulas are widely used in the study of dependence related problems, in this

section we briefly review the concept of copulas.

Definition 1.2.1. An n-copula C' : [0,1]" — [0,1] is a function that satisfies the

following properties:
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(1) C is grounded, i.e. C(uy, -+ ,ui—1,0,u41,- -+ ,u,) = 0 for any 1 < i < n and

U € [0,1],]7&2

(2) C is n-increasing, i.e. for each hyperrectangle B in I"™ = [0, 1]" the C-volume of

B is non-negative.

(3) Forallu €10,1], C(1,---,1,u,1,---,1) = u, where the i-th variate is u and all

the other variates are 1, for any 1 <7 < n.

It is easily checked that n-copula C' have the following properties:
(i) C(uq,- - ,uy,) is non-decreasing with respect to u;, i =1,--- ,n, .
(ii) For all w;,v; € [0,1], i =1,--- n,

C(ula"' ,Un)—C(Ul,"' >U'n,) §Z|uz_vz .
=1

(iii) For 1 <m <n, C(uy, - ,uUm,1, -+ ,1) is an m-copula.

(iv) Let M, (uy, -+ ,u,) = min{u;, i < n}, Wy(ug, - ,u,) = max{u; +ugs + -+ +

u, — (n—1),0}, for v; € [0,1], 1 <1i < n, then
Wi(ug, - uy) < Cug, - yun) < My (ug, - up).

M, is called the Fréchet upper bound and W, is called the Fréchet lower bound.

Note that M, is a copula for all n, and W, is a copula only when n =1, 2.

Remark 1.2.1. The complete names of Fréchet bounds are Fréchet—Hoeffding bounds,

attributed to both Hoeffding [46] and Fréchet [40].

The main property of the copulas was first introduced by Sklar’s Theorem [95].
The theorem shows that a copula itself is a multivariate distribution function, and
it is one-to-one corresponding to a joint distribution when the marginal distributions

L k|

10
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Theorem 1.2.1. (Sklar’s Theorem) Let F' be a joint distribution function with

unwariate marginal distributions Fy,--- | F,. Then there exists a copula C such that

F(zy, - x,) = C(Fi(z1),- -, Ful(zn)). (1.4)

If Fy,--- , F, are continuous, then C' is unique.
Conversely, let F,--- , F, be univariate distributions and C' be a n-copula, then

F in (1.4) is a joint distribution function with univariate marginal distributions

Fla T Fn
For the random variables X, --- , X, with joint distribution F' and marginal dis-
tributions Fi,--- | F,,, we say the copula of X7,---, X,, or the vector (Xy,---,X,,) is

C'if C is defined by (1.4). From Sklar’s Theorem, X7, --- , X,, are independent if and
only if the copula C of Xy, -+, X, is C(uy, -+ ,uy) = ugus - - - Up,.

Let Fi(z) =x,i=1,--- ,n we easily obtain that a copula is the joint distribution
function of uniform distributions. This statement is usually regarded as a equivalent

definition of copulas.

Definition 1.2.2. An n-copula is a joint distribution function of n U|0, 1] random

variables.

The following theorem gives the invariant property of copulas under a strictly

increasing transformation of random variables.

Theorem 1.2.2. For strictly increasing transformations H;, 1 = 1,--- ,n, The copula

of Hi(Xy) -+, Hy(X,,) is identical to the copula of Xy, -+, X,.

The above theorem allows people to transform any random variables to uniform
random variables and study the copula. This technique is widely used in statistical

inference of copulas, for example, using the rank statistics to estimate or test copulas.

11
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Theorem 1.2.3. For a 2-copula C, for fized v € [0, 1], %C’(u,v) exists for almost
all uw € 10,1], and
0

< — < 1.
0< 8u0(u,v) <1

If we exchange the positions of u and v, the theorem still holds.

For proofs in this section and more details and applications about the copulas, the
readers are referred to Nelsen [69]. Statistical inference for copulas has been studied
extensively. The pseudo maximum likelihood estimator for parametric copulas, pre-
sented Genest, Ghoudi and Rivest [42], is most relevant to the content in Chapter 111
of this thesis. Peng, Qi and Van Keilegom [75] proposed a smoothed jackknife empir-
ical likelihood method to construct confidence intervals for a non-parametric copula.
We refer to the references in Genest, Ghoudi and Rivest [42], Embrechts, Lindskog
and McNeil [33] and Nelsen [69] for more information on the theory, applications and

statistical inference of copulas.
1.2.2 Spearman’s rho and Kendall’s tau

A copula contains all the information about a dependence structure, since the set of
copulas is one-to-one corresponding to the set of joint distributions when marginal
distributions are given and continuous. In the practice of actuarial science and finance,
it is more convenient and clear to use quantities instead of functions to measure
dependence, due to computational difficulties. Spearman’s rho and Kendall’s tau are
two commonly used measures of dependence between two random variables.

Let (X1,Y1), (X2, Y3) be independent random vectors with distribution function H
and continuous marginals F'(z) = H(z,00) and G(y) = H (o0, y). Then the Kendall’s

tau and the Spearman’s rho of (X3,Y)) are defined as
T =P[(X; — X5)(Y1 = Y2) > 0] = P[(X; — X5) (Y1 — Y3) < 0]
and

p* = 12E[(F(X,) — 1/2)(G(Y1) — 1/2)],

12
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respectively.
It is well-known that 7 and p® depends only on the copula C' of X; and Y7; see

Nelsen [69] for instance. Moreover, 7 and p® has the copula representation:

— / / O, y)dC (. y) — 1,
[0,1]2

and

PP =12 // C(z,y)dzdy — 3.
[0,1]2

As measures of dependence, 7 and p® enjoy the following property.

Theorem 1.2.4. Let C, 7 and p® be the copula, the Kendall’s tau and the Spearman’s
rho of (X,Y), respectively. Then

(o) C=MyeT1=1p"=1.
(b)) C=Wyer1=-1&p°=—1.

(c) Clu,v) =uv=7=p"=0.

For a proof, see Embrechts, McNeil, and Straumann [34]. Note that although the
independence of X, Y implies 7 = p® = 0, the converse is not true.

Statistical inferences on the above dependence measures can be found in Nelsen
[69]. The Spearman’s rho is also extended to the multivariate case by Schmid and
Schmidt [91] and Nelsen and Ubeda-Flores [70].

In this thesis, we will investigate the statistical estimation problems related to
copulas and Spearman’s rho in Chapter III and solve Fréchet Class problems using
the method of copulas in Chapter IV. As an application, we also find an lower bound

for the multivariate version of Spearman’s rho in Chapter IV.

1.3 Fréchet Class Problems
1.3.1 Fréchet classes

As mentioned in Section 1.2, the dependence structure plays an important role in

the recent.research.of actuarial science, mathematical finance and risk management.

13
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Among the topics related to the dependence, one notable setting is called the problem
of Fréchet class. A Fréchet class is a class of random vectors with given marginal
distributions, usually denoted by §,.(F1, Fp, -, F,). Let X = (Xy,---,X,) is a

random vector in R™, and the Fréchet class is defined as
‘Sn(FluFQJ"' 7Fn) :{X XIN-[?M Z:]-u 7n}7

where n is the number of individual risks and F}, - - - , F,, are the n marginal distribu-
tions. As the simplest case, §,(F,--- , F') is the set of random vectors with identical
given marginal distribution F'. It is obvious that a random vector in a Fréchet class
is one-to-one corresponding to a copula. No surprise that copula methods are widely
used in the study of Fréchet classes.

The name of the Fréchet class comes from the result on the convex upper bound
in any Fréchet class, which is usually attributed to both Hoeffding [46] and Fréchet

[40] as mentioned in Section 1.2. In their seminal papers, it was provided that
FX(wla e ,l’n) S min{Fl(l'l), Tt aFn(xn)}

for any random vector X € §,(Fy, Fy, -+, F,) with distribution function Fx. This
bound is exactly due to the Fréchet upper bound M,, as mentioned in Section 1.2.
The result is closely related to the concepts of comonotonicity and stochastic ordering.
The readers are referred to Deelstra, Dhaene and Vanmaele [24] for an overview of the
comonotonicity and its applications in finance, and Shaked [92] for an introduction
and summary of the stochastic ordering.

The Fréchet class problems are important in the practice of modern risk man-
agement, simply because statistically estimating the joint distribution of a random
vector is usually much more difficult than estimating the marginal distributions from
the accessible data in the financial market today. Therefore, using the bounds instead
helps one to manage risks and uncertainty. Unfortunately, although the upper bound

in.the convex-erdering sense was given more than half a century ago, the attempts

14
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to find the lower bounds of Fx have never been that successful, as W, is no longer a
copula for n > 3.
As a more general class of problems, it has been asked for a long time to find the

bounds on the distribution of ¢ (X),
my(s) = inf{P(Y(X) < s) : X € Fn(F1, o, -+, F) Y}, (1.5)

for for a function ¢. Makarov [63], in response to a question formulated earlier by
A.N. Kolmogorov, provided the first result of n = 2 and @ = +, the sum operator.

An elegant and important duality result was later given by Riischendorf [85]:

my(s) =1 — inf {Z / fidF; : f; are bounded measurable functions on R s.t.
i=1

Zfl(x,) > s o0)(W(21, -+ 2y)), forallz; € R, i=1,--- ,n} :
i=1
(1.6)

However, this dual optimization is still hard to solve in general.
In the next sections, we will summarize the recent attempts made to solve the

problems of bounds in Fréchet classes.
1.3.2 Bounds on the distribution of the total risk

Among different choices of ¥ in (1.5), (X)) = +(X) = X; + - -+ + X, is extensively
studied due to its nice mathematical properties and important applications in prac-
tice, as 1(X) is the total risk or the joint portfolio of individual risks or assets in this
case.

Let X = (X4, ,X,) € §u(Fi1, Fo, -+, F,) be arisk vector with known marginal
distributions Fi, - -- , F,. Denote by S = X;+---+ X, the total risk. Researchers are

looking for the best-possible bounds for the distribution of the total risk S, namely

my(s) = inf{P(S < s): X € §.(F1, Fa,--- , F,)}, (1.7)

15
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and

M (s) =sup{P(S < s): X € Fn(F1, Fo,--- , )} (1.8)

The bounds m(s) and M, (s) directly lead to the sharp bounds on quantile-based
risk measures of S. In practice, the managers of investment banks are more interested
in the Value-at-Risk of a joint portfolio. The Value-at-Risk (VaR) at level « is defined
as

VaR,(5) =inf{s e R: P(S < s) > a}.

The bounds on the above VaR are called the worst (best) Value-at-Risk scenarios and
are given by the inverse functions of the bounds m (s) and M, (s).

Riischendorf [85] first found m, (s) when all marginal distributions have the same
uniform or binomial distribution, where the techniques of the duality (1.6) were
employed. A complete analysis of this kind of problems was given in Rachev and
Riischendorf [83]. After the 1982 paper [85], no significant results were given for
about fifteen years.

In the 1990s, the method of copulas has became more and more popular. As the
ultimate modern tool for modeling dependence, copulas kicked in and helped with
solving the Fréchet class problems (1.7) and (1.8). The papers of P. Embrechts at
ETHZ and his colleagues were considered the most relevant during the last decade.
Denuit, Genest and Marceau [26] and Embrechts, Hoing and Juri [32] used copulas
to obtain the so-called standard bounds and discussed some applications. The stan-
dard bounds are no longer sharp for n > 3. Embrechts and Puccetti [35] provided
a better lower bound which is still not sharp, in the case when all marginal distri-
butions are the same and continuous. Some results when partial information on the
dependence structure were also given in that paper. Embrechts and Héing [31] pro-
vided a geometric interpretation to highlight the shape of the dependence structures
with the worst VaR scenarios. Embrechts and Puccetti [36] extended this problem

to-multivariate.marginal distributions and provided results similar to the univariate
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case. Kaas, Laeven and Nelsen [54] studied the worst VaR scenarios for the case when
partial information on some measure of dependence is known.
Finally, we refer to Embrechts and Puccetti [37] for an overview on the importance

and applications of problems (4.2) and (4.3) in quantitative risk management.
1.3.3 Bounds on other quantities

Related to the Fréchet class, another classic problem in simulation and variance re-
duction is to minimize the variance of the sum S of random variables Xy, -+, X,

with given marginal distributions, i.e.
mf{Var(S) X ng(Fl,FQ,"' 7Fn)} (19)

Fishman [38] and Hammersley and Handscomb [43] present good introduction and
references on this problem. It is well-known that for n = 2 the solution is given by
the antithetic variates X; = F| (U) and Xy = F,; (1 —U) where F'~ is the inverse cdf
of P and U is uniform on [0,1]. For n > 3 the problem is generally difficult to solve.

A more general version of the problem (1.9) is
inf{Ef(S): X € Fn(F1, Fy, -+, Fn)}. (1.10)

There are many special cases of (1.10), such as the variance minimization problem

(1.9), the minimum of expected product
inf{E(X;---X,): XeF(F1, Fo,-- , F,)}, (1.11)
and bounds on the stop-loss premium
nf{E[(X;+ -+ X, —t)]: XeEFu(F1,F,---,Fn)}, (1.12)

where (). = max(-,0). Many of the special cases are related to various topics in
statistics, risk theory, copulas and stochastic orders. (1.11) is directly linked to the
lower bound of the multivariate Spearman’s rho introduced by Schmid and Schmidt

(94,
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Studies for n > 3 have been done mostly in the homogenous (when F; = --- =
F, = F). Gaffke and Riischendorf [41] proposed to find a dependence structure to
concentrate S around its expectation as much as possible, since it is obvious S = ¢ is
an optimal solution to (1.9) if such constant ¢ exists. Then it follows a question: for
which F', S is possibly a constant? Gaffke and Riischendorf [41] studied the property
of possible S = ¢ in the case of uniform distributions and binomial distributions. The
case of distributions with symmetric and unimodal density was studied for n = 3 by
Knott and Smith [60, 61] and for the general case n > 2 by Riischendorf and Uckel-
mann [87] using a different method. The property was also extended to multivariate
distributions in Riischendorf and Uckelmann [87].

In Chapter IV, we will present a new concept called complete mixability distribu-
tions. The new technique developed here can be used to solve (1.7) (1.8) and (1.10)
in the case of F is a completely mixable distribution, or F' is a distribution with
monotone density on its support. This result completes the convex ordering bounds

in the Fréchet class §,(F, F,--- , F) for F with a monotone density.
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CHAPTER 11

EMPIRICAL LIKELIHOOD TESTS FOR
HIGH-DIMENSIONAL DATA ANALYSIS

High-dimensional (HD) data analysis is arguably one of the most popular topics in
the research of statistics nowadays. The developments on this topic have been very
significant, with a wide range of applications. The phenomena of high-dimensionality
appears extensively in genomics, economics, finance, linguistics and many other fields
of the modern science. We refer to the book Cai and Shen [13] for a review of the
recent developments and applications of the HD data analysis. In this chapter, we
will investigate four testing problems within the HD framework, using the methods of
the empirical likelihood. The contents in this chapter is mainly based on the following

preprints.

1. Wang, R., Peng, L. and Qi, Y. (2012). Jackknife empirical likelihood test for

equality of two high dimensional means. Preprint.

2. Peng, L., Qi, Y. and Wang, R. (2012). Empirical likelihood test for high-

dimensional linear models. Preprint.

3. Zhang, R., Peng, L. and Wang, R. (2012). Tests for covariance matrix with

fixed or divergent dimension. Preprint.

2.1 Introduction, Notations and Regularity Conditions

In this chapter, we investigate the testing problems associated with an array of i.i.d.
p-dimensional vectors X; = X\ = (Xi(j}), e ,Xi(z)) for i = 1,--- ,n. When p is

fixed and small, conventional tests such as the Hotelling 7 test perform well both
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theoretically and computationally. However, if the dimension p approaches infinity
as the sample size n goes to infinity, the classic methods do not work in general; see
[5, 15, 16] for instance, and this phenomena will be discussed later in the following
sections.

The classic testing problems are of our interest, where all quantities may depend

on n and p.

(i) Suppose (X1, -+, X,,) and (Y3, -+ ,Y,,) are two independent random samples
with sample sizes n;, ny and unknown means p;, po respectively. Consider the

testing problem

HO L = U2 against H1 5] 7é 2. (21)

(i) Suppose Xi,---, X, are independent and Y; = BT X; + ¢, for i = 1,--- | n,
where = (81, ,5,)7 is the vector of unknown parameters and €, - - - €, are

iid random errors. Consider the testing problem
Hy : B = By against Hy : 3 # . (2.2)

(iii) Suppose Xi,---, X, are independent with an unknown covariance matrix ¥ =

(0ij)pxp- Consider the testing problem
Hy : ¥ =X against Hy : ¥ # X. (2.3)
(iv) Similar to (iii), consider the testing problem
Hy:o0;;=0forall [i — j| > 7 against H;: Hy is false. (2.4)

In this chapter, to apply new empirical likelihood methods to those problems, the

following regularity condition will be frequently used.

(P). An estimator T' with sample size n satisfies condition (P) if ET? > 0 and for

some 0 > 0,

E|T|* smin(3.2)
—————=o(n 1 ).
(ET2)1+5/2
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For example, if E(T%)/(IE(T?))? = o(n), then T satisfies (P) with § = 2. Note that
this condition is generally satisfied by Gaussian random vectors.

Condition (P) is concise and necessary to guarantee the conditions (L1)—(L3) used
in the empirical likelihood. However, (P) is sometimes inconvenient to check when
the estimator 7' is complicated. Hence, we propose the following two models.

In the following models, let X = (Xi,---,X,) be a random sample of size n,
with mean p and covariance matrix >, and A\; < --- < Ay be the p eigenvalues of the

matrix .
(A). A random sample X of size n satisfies condition (A) if

(A1) 0 < liminf A\ <limsup A\, < oo.

(A2) For some § > 0, % P E[X1; — pil*™ = 0O(1), and

§+min(6,2)

(A3) p=o(m 2@ ),

Condition (A3) is a somewhat restrictive condition for the dimension p. Note that
conditions (A1) and (A2) are related only to the covariance matrices and some higher
moments on the components of the random vectors. The higher moments we have,
the less restriction is imposed on p. Condition (A3) can be removed for models with
some special dependence structures. For comparison purpose, we will also consider
the following model (B) used in Bai and Saranadasa [5], Chen, Peng and Qin [15] and
Chen and Qin [16].

(B). (Factor model.) A random sample X of size n satisfies condition (B) if
Xi=TB;+m

fori=1,---,ny, where I'is a pxk matrix with I'TT = ¥, {B; = (B; 1, -+, Bis)"

is an independent random sample satisfying that EB; = 0, Var(B;) = Igxs,
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EB;fj:3+f<oo, and

k k
vy vy
I H Biﬂ?z - H EBMZ
=1 =1

when vy + - -+ 4+ v, = 4 for distinct nonnegative integers 4;’s.

In the problem of testing covariance matrices (Section 2.4), a stronger condition on
the moment is imposed due to the effect of high-order statistics. Therefore, we list

the alternative model (B’) below for covariance testing problems.

(B’). A random sample X of size n satisfies condition (B’) if (B) holds, and each of

B, ; in (B) has uniformly bounded 8th moment, and

k k
el s =11E8
=1 =1
when vy + - -+ + v, = 8 for distinct nonnegative integers 1;’s.

The idea of constructing tests in this chapter is as follows. In order to test Hy: a
vector parameter v = 0 (e.g. in problem (i) v = p; — p2), we first find an estimator
T such that E(T) = 0 is equivalent to Hy. Then we use E(T") = 0 as the estimating
equation to apply the empirical likelihood method. Such a test may not be powerful;
we add one more linear functional to enhance the power of the test. The methods are
new and they usually require a weaker assumption on the model compared to existing
work in the literature. Most of the proofs in this chapter are justifying conditions
(R1)—(R3). Lastly, it is worth mentioning that the power of the tests proposed in this
chapter perform better in the case of dense model (i.e. in the alternative hypothesis,
many components of v # 0), rather than the sparse model (i.e. in the alternative
hypothesis, many components of v = 0).

The rest of this chapter is organized as follows. In Section 2.2, we present a
jackknife empirical likelihood test for problem (i). An empirical likelihood test for
problem (ii) is introduced in Section 2.3. Tests for problem (iii) and (iv) are discussed
in Section 2.4. In each section, there are separate subsections of an introduction, main

resultsysimulation studies and proofs.
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2.2 Test for Equality of Two High-dimensional Means

It has been a long history to test the equality of two multivariate means. One pop-
ular test is the so-called Hotelling 72 test. However, as the dimension diverges, the
Hotelling 72 test performs poorly due to the possible inconsistency of the sample
covariance estimation. To overcome this issue and allow the dimension to diverge as
fast as possible, Bai and Saranadasa [5] and Chen and Qin [16] proposed tests without
the sample covariance involved, and derived the asymptotic limits which depend on
whether the dimension is fixed or diverges under a specific multivariate model. In
this section, we propose a jackknife empirical likelihood test which has a chi-square
limit independent of the dimension, and the conditions are much weaker than those
in the existing methods. A simulation study shows that the proposed new test has a

very robust size with respect to the dimension, and is powerful too.
2.2.1 Introduction

Suppose X = {X; = (X;1, -, Xip)  ii=1,...,m}and Y ={YV; = (V;q,- -, V)" :
j=1,...,ns} are two independent random samples with means p; and pus, respec-
tively. It has been a long history to test Hy : p; = e against H, : iy # o for a fixed
dimension p. When both X; and Y; have a multivariate normal distribution with

equal covariance, the well-known test is the so-called Hotelling T2 test defined as

T =X -Y)TA M (X -Y), (2.5)

ni+n2—2)nin v n ¥, n n
where 7 = %’ X = %Zzél Xy, Y = 7%21221}/; and A, = > 1 (X; —
X)(X; = X) T+ 37 (Y; — Y)(Y: — Y)T. However, when p = p(ny,ny) — oo, the
Hotelling 72 test performs poorly due to the possible inconsistency of the sample

covariance estimation. When p/(n; + ng) — ¢ € (0,1), Bai and Saranadasa [5]

derived the asymptotic power of T2?. To overcome the restriction ¢ < 1, Bai and
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Saranadasa [5] proposed to employ

M,=X-Y)"(X-Y)—-nttr(A,)
instead of T2 under a special multivariate model without assuming multivariate nor-
mality while keeping the condition of equal covariance, and derived the asymptotic

limit when p/(n; + n2) — ¢ > 0. Recently Chen and Qin [16] proposed to use the

following test statistic

ZE; Xz'TXj ZZZ] Y;TY; B 22?:11 Z;Lil XzTY;

nl(nl — ]_) ’I’LQ(TLQ — 1) nin9

cQ = (2.6)

in order to allow p to be a possible larger order than that in Bai and Saranadasa [5].
Again, the asymptotic limit of the proposed test statistic C'() depends on whether the
dimension is fixed or diverges, which results in either a normal limit or a chi-square
limit, and special models for {X;} and {Y;} are employed. Another modification
of Hotelling T? test is proposed by Srivastava and Du [97] and Srivastava [96] with
the covariance matrix replaced by a diagonal matrix. Rates of convergence for high
dimensional means are studied by Kuelbs and Vidyashankar [59]). For nonasymptotic
studies of high dimensional means, we refer to Arlot, Blanchard and Roquain [2, 3].
Here, we are interested in seeking a test which does not need to distinguish whether
the dimension is fixed or diverges.

By noting that p; = s is equivalent to (g — ) (1 — p2) = 0, one may think of
applying an empirical likelihood test to the estimating equation E{(X;, —Y;, )7 (X;, —
Y;,)} = 0 for iy # iy and j; # jo. If one directly applies the empirical likelihood
method based on estimating equations proposed in Qin and Lawless [82] by using the
samples Xy,---,X,, and Yy,---,Y,,, then one may define the empirical likelihood

function

ni na ni
sup {H(mpi)H(nij) P10, Py 2 0,q1 >0, gny >0, pi=1,
i=1

i=1 j=1

na ni n2
ZQj =1, Z Z Z Z (phXh - ley}l)T(pigXig - qj2YjQ) = 0} )
j=1

i1=1idg#i1 j1=1 joF£j1
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which makes the minimization unsolvable. The reason is that the estimating equa-
tion defines a nonlinear functional, and in general one has to linearize the nonlinear
functional before applying the empirical likelihood method. For more details on
empirical likelihood methods, we refer to Owen [73] and the review paper of Chen
and Van Keilegom [17]. Recently, Jing, Yuan and Zhou [47] proposed a so-called
jackknife empirical likelihood method to construct confidence regions for nonlinear
functionals with a particular focus on U-statistics. Using this idea, one needs to
construct a jackknife sample based on the following estimator ny ' (n; —1)"'ny *(ny —

1)~ Zmﬁm > i, (X, —Y;,)"(X:,—Y},), which equals the statistic CQ given in (2.6).
However, in order to have the jackknife empirical likelihood method work, one has to
show that \/ninan; ' (ny —1)"tny (ny — 1)~ D > (Xiy — V)" (X, —Y;,) has
a normal limit when p; = po. Consider ny = ny =n,d =1, u; = po. Then it is easy
to see that

n n_l ZZ o Xi2_Y}'2)

11742 j17£]2
n n n

= nil{Z(Xi—Yi)}Q—nilz(Xi—Yi)Q‘Fﬁinzyj

i=1 i=1 Jj=1
2 n
(n—1) ZZ:; X

L AN, E(X: - 1))} - E(X; — V)2

which does not have a normal limit as n — oo. Hence a direct application of the
jackknife empirical likelihood method to the statistic C'Q) will not lead to a chi-square
limit.

In this section, we propose a novel way to formulate a jackknife empirical likelihood
test for testing Hy : p; = po against H, : uy # pe by dividing the samples into two
parts. The proposed new test has no need to distinguish whether the dimension is
fixed or goes to infinity. It turns out that the asymptotic limit of the new test under

H g is.a-chi-squarelimit independent of the dimension, the conditions on p and random
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variables {X;} and {Y;} are weaker too. A simulation study shows that the size of
the new test is quite stable with respect to the dimension and the proposed test is
powerful as well.

We organize the whole section as follows. In Section 2.2.2, the new methodology
and main results are given. Section 2.2.3 presents a simulation study and a real data

analysis. All proofs are put in Section 2.2.4.
2.2.2 Methodology

As mentioned in Section 2.2.1, throughout assume X; = (X;1,--- ,Xi,p)T for 1 =

1,---,ny and Y; = (Yi1, -+, Y,

f )T for j = 1,--- ,ny are two independent random

samples with means py and pug, respectively. Assume min{ni,ns} goes to infinity.
The question is to test Hy : pu; = e against H, @ puqp # po. Since py = pg is equivalent
to (= p2) (g1 — p2) = 0 and B(XG, — Y5) (X, = Vi) = (1 — p2)" (11 — pao) for
11 # i and j; # Jo, we propose to apply the jackknife empirical likelihood method to
the above estimating equation. As explained in the introduction, a direct application
fails to have a chi-square limit. Here we propose to split the samples into two groups
as follows.

Put my = [n1/2], ma = [n2/2], m = my +ma, X; = Xjim, fori=1,--- ,my, and
Y; = Yiym, for j =1,--+ my. First we propose to estimate (3 — p2)? (1 — p2) by

mi1 mao

D) BEERALEER L 2.)

mims

i=1 j=1
which is less efficient than the statistic C'(Q. However, it allows us to add more estimat-
ing equations and to employ the empirical likelihood method without estimating the
asymptotic covariance. By noting that E{(X;—Y;)T(X;—=Y;)} = (1 —p2)T (1 —p2) =
|11 — po|* instead of O(]|u; — pal|), one may expect that a test based on (2.7) will
not be powerful for a small value of || — po]|, confirmed by a brief simulation study.

In order to improve the power, we propose to apply the jackknife empirical likelihood
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method in Jing, Yuan and Zhou [47] to both (2.7) and a linear functional such as

mip ma2

ZZ{ (Xi —Y)T1, +(Xi —Y)"1,} (2.8)

=1 j=1

mimes

rather than only (2.7), where 1, = (1,---,1)7. Note that equation (2.8) can be
replaced by another linear functional or several functionals with at least one linear
functional to further improve the power. With prior information on the model or
more specific alternative hypothesis, some linear functionals can be chosen to replace
(2.8) so as to improve the power of the test. With no additional information, any
linear functional is a possible choice theoretically. Simulation study suggests that
applying the jackknife empirical likelihood to (2.7) and (2.8) results in a test with
good power and quite robust size with respect to the dimension.

As in Jing, Yuan and Zhou [47], based on (2.7) and (2.8), we formulate the jack-

knife sample as Z;, = (Zy,1, Z2)" for k=1,--- m, where
Zyy = Mk S ST (X = Y)) (X - Y)
S it 2o (Xs = V)T (Xi = Y))

Zra = T 3 YK = Y) L, + (X = V) L}
— R Yihim1 e (X = V) L, + (X = Y))T1,}

\ (m1—1)me

fork=1,---,mq, and

’

Ty = T I YA (X = V)X - Y))
e S D kg (X = YT (X = V)
Tjpop = matma 5o Z (X - YL, + (X, — Y)Tlp}

mimse
\ 214;7222 11 Z Z];ék mi,j= 1{()(Z - }/]')T]‘p + (Xl o ?})T]‘P}
for Kk = m; + 1,--- ;m. Based on this jackknife sample, the jackknife empirical

likelihood function for testing Hy : p1 = o is defined as

Ly = sup{] J(mpi) :p1 2 0, pu 20,3 pi=1) piZ = (0,0)"}.
i=1 =1

i=1
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By the Lagrange multiplier technique, we have pp = m={1 + 37Z,}7! for k =
1,---,mand l, = —2log L,, =2 " log{1 + 87 Z)}, where 3 satisfies

m

1 Zy
m Tz - 00" 2

i=1
X1, and use \; < --- < )\, to denote the p eigenvalues of the matrix . Similarly,
write i = (0_-ij)1SiSp71§j§p = E{(Yl — /JQ)()/l — MQ)T} and use 5\1 S s S 5\1, to denote
the p eigenvalues of the matrix 3. Also write
P P p P
P1 = ZU?J, P2 = Z&ij, 7'1:220}"]’, 7—2:2251',]" (210)
5,j=1 i,j=1 t,j=1 i,j=1

Note that p1 = E[(X1— )" (X1—m)]?, p2 = E[(Y1—p2)" (Y1 —p2)]?, 7 = 2E[1] (X1~
p1))* and 7 = 2E[1] (Y1 — p2)]?, and these quantities may depend on ny,ny since p

may depend on ny, ne.

Theorem 2.2.1. Assume min{ny,ns} — oo, 7 and 7o in (2.10) are positive, and

for some 0 > 0,

E[(X; — u)T (X — ) > S4min(6,2)
(2+9)/2 =o(my * ), (2.11)
P1
E|(Yi — pa)" (Vi — o) **° s4min(52)
(249)/2 =o(my, * ), (2.12)
P2
E|17(X; + X7 — 2pq)[* smin(3,2)
. (2+9)/2 =o(m; * ), (2.13)
T
and
E|17 (V) + Yy — 2u0)**° 5-tmin(5.2)
- (2+9)/2 =o(my, * ). (2.14)
T2

Then, under Hy : p1 = o, L, converges in distribution to a chi-square distribution

with two degrees of freedom as min{ny, na} — oo.

Based on the above theorem, one can test Hy : uy = uo against H, : iy # o by
rejecting Hy when [,, > Xgﬁ, where Xgﬁ denotes the (1 — v)—quantile of a chi-square

o.degrees of freedom and + is the significant level.
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Remark 2.2.1. Conditions (2.11)—(2.14) can be rephrased as (X; — u1)T(X1 — 1),
(Ve — p2)" (Y1 — p2) 1) (X1 4+ X1 — 211) and 17(Y1 4 Y7 — 245) satisfy condition (P).
Remark 2.2.2. In (2.11)—(2.14), the restrictions are put on E|W |>+? /(EW?2)(2+9)/2 for
some random variables W, which are necessary for the CLT to hold for random arrays.
Later we will see those conditions are easily satisfied by imposing some conditions on

the higher-order moments or special dependence structure.

Remark 2.2.3. The proposed test has the following merits:

1. The limiting distribution is always chi-square without estimating the asymptotic

covariance.

2. It does not require any specific structure such as the one used in Bai and

Saranadasa [5] and Chen and Qin [16], which will be discussed later.

3. With higher-order moment condition or special dependence structure of {X;}

and {Y;}, p can be very large.

4. There is no restriction imposed on the relation between n; and ny except that
min{ny,ns} — oo. That is, no need to assume a limit or bound on the ratio
ni/ny. Moreover, no assumptions are needed on p;/ps or 71/75. Hence the
covariance matrices »; and X can be arbitrary as long as 7,7 > 0, which
are simply equivalent to > 7 X, and ) » | Y;,; are non-degenerate random

variables.
Next we verify Theorem 2.2.1 with model (A) and (B).

Corollary 2.2.2. Assume min{ni,ns} — oo, X and Y satisfy (A). Then, under

Hy : iy = po, conditions (2.11) — (2.14) are satisfied, i.e., Theorem 2.2.1 holds.

Theorem 2.2.3. Assume 11 and 15 in (2.10) are positive and X and Y satisfy (B).
Then under Hy : 1 = pa, Ly converges in distribution to a chi-square distribution

withetwosdegieessof-freecdom as min{ny,ny} — oo.
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Remark 2.2.4. Tt can be seen from the proof of Theorem 2.2.3 that assumptions
EB}; = 34 & < oo in model (B) can be replaced by the much weaker conditions
max <<t EB}; = o(m). Unlike Bai and Saranadasa [5] and Chen and Qin [16], there
is no restriction on p and k for our proposed method. The only constraint imposed
on matrices I'y and I's is that both Zle X1, and Zle Y, ; are non-degenerate, which

is very weak.
2.2.3 Simulation study

We investigate the finite sample behavior of the proposed jackknife empirical likeli-
hood test (JEL) and compare it with the test statistic in (2.6) proposed by Chen and
Qin [16] in terms of both size and power.

Let Wy, - -+, W, be iid random variables with distribution function N (0, 1), and let
Wi, -+, W,, independent of W/s be iid random variables with distribution function
t(8). Put X1, =Wy, X1o=Wi+Wo, -+ Xy, =Wa 1 +W,, Vi1 =W+ pg;, Vo=
Wi+ Wa+pigg, -+, Yip = Wa_ 1+ W, + fia,, where o, = ¢ if i < [eop], and pg; = 0
if ¢ > [cop]. That is, 100c2% of the components of Y7 have a shifted mean compared
to that of Xj.

Since we test Hy : EX; = EY; against H, : EX; # EYj, the case of ¢; = 0
denotes the size of tests. By drawing 1,000 random samples of sizes n; = 30, 100, 150
from X = (Xy1,---,X1,)" and independently drawing 1,000 random samples of
sizes ny = 30,100,200 from YV = (Yy4,---,Y;,)T with d = 10,20, - -, 100, 300, 500,
c1 = 0,0.1 and ¢ = 0.25,0.75, we calculate the powers of the two tests mentioned
above.

In Tables 2.1-2.3, we report the empirical sizes and powers for the proposed jack-
knife empirical likelihood test and the test in Chen and Qin [16] at level 5%. Results
for level 10% are similar. From these three tables, we observe that (i) the size of both

tests, i.e., results for ¢; = 0 is quite stable with respect to the dimension p; (ii) the
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Table 2.1: Sizes and powers of the proposed jackknife empirical likelihood test (JEL)
and the test in Chen and Qin [16] (CQ) are reported for the case of (ny,ns) = (30, 30)
at level 5%.

P JEL CcQ JEL CcQ JEL CcQ

=0 =0 ct=01 ¢ =0.1 cp=01 ¢ =01

co =025 ¢ =0.25 co =025 ¢ =0.25 co =075 ¢ =0.75
10 0.070 0.049 0.071 0.049 0.072 0.062
20 0.056 0.037 0.057 0.049 0.096 0.060
30 0.064 0.047 0.066 0.049 0.113 0.066
40 0.070 0.052 0.069 0.058 0.116 0.072
50 0.067 0.049 0.083 0.054 0.138 0.067
60 0.063 0.039 0.069 0.043 0.174 0.055
70 0.053 0.053 0.076 0.065 0.190 0.081
80 0.056 0.059 0.063 0.067 0.191 0.082
90 0.056 0.044 0.080 0.054 0.204 0.071
100 0.066 0.060 0.082 0.064 0.229 0.091
300 0.056 0.045 0.114 0.054 0.537 0.092
500 0.049 0.051 0.160 0.063 0.731 0.110

proposed jackknife empirical likelihood test is more powerful than the test in Chen
and Qin [16] for the case of ¢ = 0.75 and the case when the data is sparse, but p
is large (i.e., the case of ¢; = 0.1, ¢co = 0.25). Since equation (2.8) has nothing to do
with sparsity, it is expected that the proposed jackknife empirical likelihood method
is not powerful when the data is sparse. Hence, it would be of interest to connect
sparsity with some estimating equations so as to improve the power of the proposed
jackknife empirical likelihood test.

In conclusion, the proposed jackknife empirical likelihood test has a very stable
size with respect to the dimension and is powerful under the dense model. Moreover,
the new test is easy to compute, flexible to take other information into account, and

works for both fixed dimension and divergent dimension.
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Table 2.2: Sizes and powers of the proposed jackknife empirical likelihood test (JEL)
and the test in Chen and Qin [16] (CQ) are reported for the case of (ni,ng) =
(100, 100) at level 5%.

D JEL cQ JEL cQ JEL cQ
0120 0120 C1:0.1 C1 =0.1 0120.1 01:0.1
Cy = 0.25 Cy = 0.25 Cy = 0.25 Cy = 0.25 Cy = 0.75 Cy = 0.75
10 0.074 0.054 0.072 0.063 0.099 0.090
20 0.043 0.047 0.053 0.055 0.145 0.098
30 0.047 0.047 0.056 0.063 0.191 0.115
40 0.051 0.050 0.063 0.062 0.264 0.125
50 0.055 0.040 0.077 0.061 0.326 0.131
60 0.055 0.044 0.077 0.067 0.374 0.151
70 0.043 0.051 0.063 0.086 0.395 0.150
80 0.042 0.059 0.082 0.079 0.474 0.171
90 0.043 0.040 0.098 0.065 0.527 0.163
100 0.049 0.054 0.091 0.088 0.575 0.194
300 0.048 0.054 0.217 0.102 0.974 0.389
500 0.049 0.041 0.353 0.115 0.999 0.544

Table 2.3: Sizes and powers of the proposed jackknife empirical likelihood test (JEL)
and the test in Chen and Qin [16] (CQ) are reported for the case of (ni,n2) =
(150, 200) at level 5%.

P JEL CcQ JEL CcQ JEL CcQ
cp =0 =0 cp=01 ¢ =01 c1=01 ¢ =01
Cy = 0.25 Cy = 0.25 Cy = 0.25 Cy = 0.25 Cy = 0.75 Cy — 0.75
10 0.048 0.054 0.054 0.062 0.129 0.116
20 0.055 0.042 0.078 0.075 0.237 0.166
30 0.052 0.054 0.079 0.081 0.330 0.207
40 0.039 0.035 0.070 0.068 0.430 0.212
50 0.039 0.048 0.071 0.094 0.480 0.231
60 0.047 0.051 0.092 0.095 0.598 0.273
70 0.046 0.051 0.086 0.107 0.658 0.309
80 0.042 0.047 0.113 0.109 0.753 0.327
90 0.046 0.043 0.148 0.098 0.781 0.346
100 0.048 0.059 0.141 0.117 0.821 0.365
300 0.044 0.040 0.370 0.163 1 0.703
500 0.047 0.045 0.555 0.235 1 0.899
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2.2.4 Proofs

In the proofs we use || || to denote the Ly norm of a vector or matrix. Since py — o is
our target and under null hypothesis p1; — o = 0, without loss of generality we assume
H1 = Ho2 = 0. Write Ui = (Xz - }/})T(Xz - Y}) and Vij = (Xz — Y})Tlp + (Xz — Yj)Tlp

for 1 < i < my,1 < j < my. Then it is easily verified that for 1 < i,k < my,1 <

.j?l S m27
E(U”) = E('Ukl) = E(uijvkl) = O,
p
Var(ug) = Z(O’ij + 5@'2,3') = p1 + p2,
ij=1
and

p
Var(vkl) =2 Z(Ui’j + 5’2‘73‘) =T + To.

ij=1

Lemma 2.2.4. Under conditions of Theorem 1, we have as min{ny,ny} — 00

ZXTX 4 N(0,1), (2.15)

f: LRl N(0,1), (2.16)

L 1T X; +X
Z ) 4 N(0,1), (2.17)

and
2 1TY+Y a4

Z

Proof. Since Var(X!X;) = py and X{ Xy, , X! X, are i.i.d. for fixed my, equa-

< N(0,1). (2.18)

tion (2.15) follows from (2.11) and the Lyapunov central limit theorem. The rest can

be shown in the same way. O

From now on we denote
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Lemma 2.2.5. Under conditions of Theorem 1, we have as min{ny,ny} — oo

X'y v, = 2.1
i 2N 219
>
17x, 2o, (2.20)
miy/T i=1 g
ma2
! > o1ty bo, (2.21)
ma/T =
(XTX;)?
— z 1, (2.22)
ma
(Y1Y;)?
— Z i (2.23)
mo
17(X; + X,
—Z[ X)) 21, (2.24)
my
17(y; +Y))
_Z al)s 21, (2.25)
mg
1 & XX, [17( (X; + X,
- I, 0, (2.26)
my 5 VP1T1

and
1 & YTY 1TY+Y)] »
H

mz PQT 2

(2.27)

Proof. Note that p; = pg = 0 are assumed in Section 4. Then (2.19) follows from the
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fact that

m mi1 mg 2
g N ) - B m(;zm)

Jj=1

< m._ p1tp2
T mit+me 2p
1.1 1
< S+
mq mo

In the same way, we can show (2.20) and (2.21).

To show (2.22), write u; = X! X;. We need to estimate E| Y7 u? — mqp; |2+9/2.

111

Note that p; = Eu?. When 0 < § < 2, it follows from von Bahr and Esseen [98] that
my
E[ > u? = mip| T2 < 2mEluf — E(uf)|*H? = O(myElua|**). (2.28)
When § > 2, it follows from Dharmadhikari and Jogdeo [28] that

mi
E| Y uf = mipn| 2 = O(miV Eluf — E(u)] ) = O(m{™ ) B ).
) (2.29)
Therefore, by (2.28), (2.29) and (2.11) we have for any € > 0

(|ZZ Ui
mip1
8_(2+6)/2E| Do uF = mpy |02
(mlpl)(2+6)/2
_ O(ml—(5+min(5,2))/4E|£|2+5)

N

—1] > ¢)

he rest can be shown in the same way. O
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Lemma 2.2.6. Under conditions of Theorem 1, we have as min{ni,ny} — 00

mo M1 Uij
Z S | SN L), (2.30)
mams 7j=1 =1 i}/L]»
m my 2 2 mpr
p
o wy | — L 2, (2.31)
g 2\ 2 )
ma mi 2
m mpz p
o ug | =22 2, 2.32
g 2\ 2" ) 2
m o 2 ’ mTy
P
_ ] —— =0 2.33
nie 2\ 2]~ O (233
mo mi 2
m mta p
- v; —— =0, 2.34
m2mir kz:; ; k mqT ( )
Uk Vii | — O, (235)
e (3 > )
p
U vip | — 0, (2.36)
o (S )

where I is the 2 x 2 identity matriz.

Proof. 1t follows from Lemma 2.2.5 that

mo M1
= LZZ XX+ Y'Y - XY, - Y X)
m1m2\/_ 7=1 =1

_ Vm iXTX+ Vi ZYT mzmz XY +Y/!'X))
ml\/ﬁi 1 mZ\/_ mlmz\/_J 1 =1

_ m 1 ZXTX vmpz 1 iQ:YTY
Vo ma yim 2
= amAm + mem + 0,(1),

+0p

m, m,
where a,, = Y22 p,, = Y2

T\
T

mip’ map’
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and

1 &Yy,
By, X N,
TV
Obviously a2, + b2, = 1 and A,,, B,, are independent. Denote the characteristic

functions of A,, and B,, by ®,, and ¥,,, respectively. Then,

E exp(it(amAm + bmBm)) = Eexp(ita,An)E exp(ithy, By,)

= &, (tan)V,,(tby,)

= [exp(—

= exp(——

i.e.,

T DN Bl (2:37)

Similarly, we have

iivw _ ymm 1 ZX+X 1, ymn 1 ZY+Y

mlmZJ 1 =1 B VT /T 1 A T2T /T
< N(0,1).

Let a and b be two real numbers with a? + b? # 0. Note that

m2 mi

ZZ
myms

Jj=1 =1

_ (m 1 ZXTX Vi 1 i"’:YTY>

\/_ \/_\/_
:(m1 ZXTX b\/\/?\/l_ZthX )
+<m 1 iYT:; b\/g\/l_ZYJrY >+0p(1)
= L+ I+ 0,(1).
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Since \/_%, \/_V:Zzpz, \/:_E, \/_V:Z;i are all bounded by one, it is easy to check that I; and

I, satisfy the Lyapunov condition by (2.11) - (2.14). Therefore
(2TPL 212y PN, )
myp miT

and

{CL2ZIO2 + b2 mto }—1/2[2 & N(O, 1)
2p moT

Since X/s are independent of Y/s, it follows from the same arguments in proving

(2.37) that
Il + ]2 & ]\7(0,(12 + bz),
i.e., (2.30) holds.

To prove (2.31), we write

2
m mi mo
m2Zm3p Lak=1 (Zj:l uka)

2
= _ _ _ 2
= P ket (Z?i’l (XFX,+ VY =YX — X,{Yj))

mzlmgp )
= T (KT X+ 3 I YT, = 2 S Y K - XTSI Y)
(2.38)
Since mp;/mip < 1, it follows from Lemma 2.2.5 that
mi
m > mp1 p
— Y (XX ——L=2%0. (2.39)
mip ,; g mip

By Lemma 2.2.4, we have

2

m I & mpa

—— —y Y'Y, | =0 = 0p(1). 2.40
m%pz (mg ; ! ]> p(mlmgp) p(1) (2.40)

my
k=1
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A direct calculation shows that

E{mz Z YTXk}2
E{(s; 272 V)X X (s
Etr{-1 Z YTXkXT

\—/\—//\/\

= Etr{XkX;f(m—Q Z;n21 Y; (m% > i Y}
= trE{Xng(m% Z;nzl Y; (m% > i Y}
= tr{Zn%i}

- o)

— 0(z8)+0(2)

= o(m),

which implies that

R Z{— nym — 0,(1).

m1pk 1

Here tr means trace for a matrix. S1m1larly we have

mpZ{Xk ZY}2_OP

It follows from (2.39) and (2.41) that
S Nee ATEE
I Do ALLLTE S 3
Op(1)0p(1) = 0,(1).

Similarly we can show that

YTXk)'

(m2 Zm2 YTX ) }1/2

;

mlp

X3 Xi) (5 X2 YY) = 0,(1)
Xi X )(XkT,ﬁQ YY) = o0p(1)
i) (s
") (X s

k mo

mlp

ke (
ke (
\ w5 (m%Zm S i Vi XE) = 0p(1)
ke (
hei (

24y, Y Yi) = op(1)

- Z;nzl YJTXk) (XT 1

k mo

1
ma2
1

\

Hence (2.31) follows from (2.38)—

39

2 Ya) = op(1).

2.44). The rest can be shown in the same way as

(2.41)

(2.42)

(2.43)

(2.44)

0
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Lemma 2.2.7. Under conditions of Theorem 1, we have as min{ny,ny} — 00
1 m @
— Vel 4 N, T 2.45
\/mkz::l % ( 9 2)7 ( )
1 &, »
k=1
1 m
— > Ziy =150, (2.47)
k=1
1 m
e > ZkiZin 50 (2.48)
k=1
Moreover, we have
Z Z,
max | 252 | = 0,(m"?) and max |=22| = o,(m"/?) (2.49)
1<k<m ' \/p 1<k<m ' /T
Proof. Note that for 1 < k < my,
ma2 M1
mi + mo — 1
Zyy = Ujj + Uj s
i 2 2 o 2
mo M1
m1 + mo — 1
Z, Vi +———— Uk,
o= G 22 o 2
and form; +1 <k <m,
—1 2 e m1 + meo — 1
Iy = ——~— ij ik—m1>
ST (e — Dm ;;% (mg — L)m; Zuk '
—1 2 mq + mo — 1
Z i i k—m
k2 (mz—l)ngguri— (2 —L)m ka 1
Thus
1 <2y 1, -1 —1 my+mg — 1 m1+m2—1 = m Ui
\/ﬁ; 0 ﬁ(mz—l my—1  (m;—1) (mg — 1)m 321;
maniy Jj=1 =1 \/ﬁ
and
N/ —

\/F
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which imply (2.45) by using Lemma 2.2.6.

It follows from Lemma 2.2.6 that

1 m
_ Z2
a3,
mo M1 2
m1+m2—1
- Ui + ————— Ui
LS (i S et S )
1 ma My m1—|—m2—1
m—pZ(mg_lmQZzum e
k=1 j=1 i=1
mo mi
= 2
- v & 2 g mpz S
—2{( m—1 1/2§§u1}2+{ fiuz}ﬂ
P(m1—1)2m1m2 i J (m _1 ] < J
m2  Mmi
_ m - )2 2
+m (ma — 1 2m2 ; ;um mp(ms 2m2m1 ]lezlu”}
L mmy .y (m—DPmi mpy L mamg,
{Op(mlx/mlm \/ﬁ )} +( 1)2m2{ +Op( )}+{ p(ml\/m \/m )}
1 mima ., (m—1)*m3 mp, 1 mimsa. o
O N+ {0
+{ p(m2 mom \/ﬁ )} +m(m _1) { +0p( )}+{ p(m2m ﬁ )}
mip  Map
= 1+0P(1)7

i.e., (2.46) holds. Similarly we can show (2.47) and (2.48).
Since Var(} " ui;) = ma(p1 + p2), we have
mi
Tim 2 P(] > il > Vemi(py+ p2)) =0,
i=1

which implies that

1<j<ma

mi
max | > | = 0,(v/mami (p1 + p2))-
i=1

Similarly we have

1<1<my

ma
max | uy| = 0p(v/mami(p1 + ps)).
j=1
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Hence by Lemma 2.2.6 and the expression for Z ;, we have

ma  Uij

maxi<k<m |%| < e | o 200 |+ maxicpm, | 2 %|
(ma— 1 Yima T Z Z;n21 %| + MaxXi<k<m, |# Z;n:l1 uJTZ|
=0p(1) + Op(m{mlmz(m +p2) }'7?)
+0p(1) + 0y (G Sy Lruma (o1 + p2) }1/?)
= 0,(m!/?).

Similarly we can show that

Zk,2 o 1/2
11<T}cf’g§n|7|— p(m /7).

O

Proof of Theorem 2.2.1. 1t follows from Lemma 2.2.7 and the standard arguments in
empirical likelihood method (see Owen [72]). O

To show Corollary 2.2.2 and Theorem 2.2.3, we first prove the following lemmas.

Lemma 2.2.8. tr(X4) = O((tr(3?))?), pr = Y20_, A2, and 2pAhy <1 < 2pA,,.
Proof. Since tr(37) = >0 | )\g for any positive integer j, the first equality follows

immediately. The second equality follows since p; = tr(X?). The third inequalities

on 7 are obvious. O

Lemma 2.2.9. For any d >0

2
p
E|XT X, [*7 < p’ (Z]E|X1,z‘|2+6>

i=1
and

p
E|1§(X1 +X1)|2+5 S 24+6p1+6ZE|X1,i|2+6-

i=1
Proof. 1t follows from the Cauchy-Schwarz inequality that
X7 X0 < |IX PP
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Then by using the C). inequality we conclude that
p (2+9)/2 p (246)/2
EIX{ X[ < E (Z X@) E (Z X’i)
i=1 i=1
» (2+48)/2\ 2
- (=(3x)
i=1
P
S <p5/2 Z E|X1’i|2+6>
i=1
» 2
= (Z E\Xl,i|2+5> :
i=1

Similarly, from the C inequality we have

2

p 246 p
]E|111;(X1 + X1)|2+5 < 24+6]E (Z |X1,z|> < 24+5p1+6 Z]E|X1,i|2+6'
=1

i=1
This completes the proof. O
Proof of Corollary 2.2.2. Equations (2.11) and (2.13) follow from conditions (Al)-
(A3) by using Lemmas 2.2.8 and 2.2.9. So do equations (2.12) and (2.14), since we
have the same assumptions on {X;} and {Y;}. O
Proof of Theorem 2.2.5. If suffices to verify conditions (2.11) and (2.13) with § = 2 in
Theorem 2.2.1. Recall we assume that 1y = up = 0. Note that Var(X;) = ¥ = I',T'7.

Denote 17T = (a1, ,a) and X' = T[Ty = (0};)1<ju<k- Then

k k
XX, = " By ;B
141 = 05151, Bltmal

j=1 1=1

and
k

17(X1+ X1) = Y a;(Bij + Buim,))-

=1

Set 6j, jpjsis = E(B1j, BijyBujs Bij,). Then 6 5, 5,5, equals 3 + & if ji = jo =

Jj3 = Jja, equals 1 if 71, j9,j3 and j, form two different pairs of integers, and is zero
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otherwise. By Lemma 2.2.8, we have

_ k k
E(X{ X))t = > Y O 1010130 503 Odn s da Ol ol

. e Ji.di 7 jo.la 7 ja,lz ™ janla
J1,J2,93,J4=111,l2,l3,l4=1

= (| D jitin 2otitts T 1 Ty 10 Ol l2|> +0 (231;&]2 100, l)
0 (Zj:l 2oy ‘73'?11‘73?12) +0 (Zj=1 Y ‘73,1)

= 0 (| PRIED DD DD DT W AN AN l2|)
O (22?1:1 Z§2=1 Zf:l o707, l) +0 (ZJ =1 Zz 10 )

= O(er(z) +0 (L, S, o))

= O(tr(Z")) + O ((tr(37))?)

= O(tr(2Y) + O ((tr(22))?)

= o(m(tr(¥%))?),

i.e., (2.11) holds with § = 2.
Similarly we have

k
EQL(X, + X)) < 241@(2%31,]-)4

j=1

“o(3 ) o)

-0 ((iaﬁf)

J=1

2
-0 ((ﬁnrﬁp) )
p p 2
- o((Lxm)).
i=1 j=1
which yields (2.13) with § = 2. Equations (2.12) and (2.14) can be shown in the same

way. Hence Theorem 2.2.3 follows from Theorem 2.2.1. O

2.3 Test for High-dimensional Linear Models

Linear model is a common technique to fit the relationship between responses and

inference can be based on either the least squares estimator or

44

www.manharaa.com




M-estimator for the coefficients. However, the asymptotic behavior generally depends
on whether the number of covariates is fixed or goes to infinity as the sample size
tends to infinity. In this section, we propose an empirical likelihood method for testing
whether the coefficients are equal to the given values. The asymptotic distribution
of the proposed test is independent of the number of covariates in the linear model.
A simulation study shows that the proposed test performs well in terms of both size

and power.
2.3.1 Introduction

In order to model the relationship between responses and covariates, regression model

is a commonly employed technique. Consider the following classic linear regression

model

Y, =0"Xi+e, i=1,--,n (2.50)
where 8 = (81, , 3,)7 is the vector of unknown parameters, X; = (X1, , X1,)7,
coy X = (Xua, -+, Xup)? are ii.d random vectors, €y, - - - , €, are independent and

identically distributed random variables with zero mean and variance o2, and X/s and
¢.s are independent. Statistical inference for § can be based on either least squares
estimator or M-estimator when p is fixed. When p depends on the sample size n and
goes to infinity as n — oo, Portnoy [79, 80] studied the consistency and asymptotic
normality of M-estimators for 3, which requires that p can not be too large.
Motivated by the studies in bioinformatics and other fields, statistical inference
for the linear model (2.50) is needed for the case when p is of an exponential order
of n, but many of /s are zero. To deal with this case, one first selects variables with
nonzero (3;s and then makes statistical inference for the selected nonzero fs. It is
not surprising that the order of the number of nonzero /s can not be larger than
the optimal one in Portnoy [80]. We refer to Bradic, Fan and Wang [10] for more

details and references on the ultrahigh dimensional situation. In this section we are
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interested in testing Hy : 6 = [y against 3 # (3 for a given value (5, € RP when p is
either fixed or goes to infinity as n — oo.

When p is fixed, a traditional test is the Hotelling’s T test defined as

-1

LB o) ( ZXXT> (B — Bo). (2.51)

where 3 = (% oy XiXiT)_li Sor VX, and 6% = %Z?:l(Y,- - BTX,-)2. It is known
that HT - XZ as n — o0o. However, when p is large, finding the inverse matrix in
(2.51) becomes problematic.

As a powerful nonparametric likelihood approach, empirical likelihood test is an-
other useful method. More specifically, write z; = X;(Y; — X' 3) fori = 1,--- ,n and
define the empirical likelihood function for (5 as

L(B) = sup{H(nqi) tqr >0, gy > O,Z%‘ =1, Z%‘Zi = 0}.
i=1 i=1 i=1

Under some regularity conditions, one can show that the Wilks’ Theorem holds,
i.e., —2log L,1(f) converges in distribution to a chi-square limit with p degrees of
freedom. Therefore, the empirical likelihood test can be constructed by using the
test statistic —2log L,1(5). See Owen [73] for more details on empirical likelihood
methods. However, the maximization in computing L,;(f) becomes nontrivial and
even unavailable when p is large; see Chen, Variyath, and Abraham [20] for discussions
on this phenomena. Empirical likelihood method for high dimensional data can be
found in Chen, Peng and Qin [15] and Hjort, McKeague and Van Keilegom [45].

Considering the difficulties in the above methods, in this section we propose a new
empirical likelihood test for testing Hy : 0 = [y by splitting the data into two parts.
It turns out the new method works for both fixed and divergent p.

We organize the whole section as follows. Section 2.3.2 presents the new method-
ology and main results. A simulation study is given in Section 2.3.3. All proofs are

put in Section 2.3.4.
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2.3.2 Methodology
Put m = [n/2], the integer part of n/2, and define X, =Xpii, Yi=Yiim, & = €ivm,

W;(8) = (ViX; — X, X]B)T(V:X; — X, X[ B)

)

fori=1,--- ,m. Then
EW;i(8) = E{(X; X[ (B — B) + Xser) (X X] (B0 — B) + Xi&i)} = (Bo — B)TS%(Bo — B),

where ¥ = E(X;X7). When X is positive definite, testing Hy : 3 = 3 against
H, : B # By is equivalent to testing Hy : EW;(5) = 0 against H, : EW;(5) # 0. This
motivates us to apply the empirical likelihood method in Qin and Lawless [82] to the
estimating equation EW;(fy) = 0. However this direct application results in a poor
power in general by noting that EW;(8) = O(]|3— (o|]?) instead of O(||3— 3]|) when
|15 — Bol| is small, where || - || denotes the Ly norm of a vector.

To improve the power, we propose to add one more linear equation EW; () = 0
where EW(8) = O(||8 — (o||) and thus it catches the small change of 5 — 3,. More

specifically, define

Wi (8) = (ViX; — X, X]8)"1, + (V;X, - X,X]3)"1,

(2

for i = 1,---,m, where 1, = (1,1,---,1)" € RP, and then define the empirical

likelihood function for 3 as

Lua(B) = sup{[ [(ma:) 1 20, - g > 0,) g =1,> _ aiWi(B) =0, ¢;W;(8) = 0}.
=1 =1 =1

i=1

By the Lagrange multiplier technique, we have

—2log Lua(8) = 2 log{1 + biW;(8) + bW, (5)}, (2.52)

where by = b1 () and by = by(3) satisfy that

m Wi (8) —
Zi:l 1+b1Wi(ﬁ)+b2Wi*(/6) - O’ (253)
=1 1+b1Wi(ﬁ)+b2Wi*(:6) -
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The following theorem shows that the Wilks’ Theorem holds for the above em-
pirical likelihood method. As in Section 2.2, we use tr(A) to denote the trace of a

matrix A.

Theorem 2.3.1. Let By be the true value of the parameter 3. Assume ¥ is positively

definite and and there exists some § > 0 such that

]EXTX 246 E 248\ 2 min(,
| X7 X |e1] :0(m6+ 4(52))7 (2.54)
{tr(EQ)}(QH)/? o2+
and
]EXT]_ 245 E 2440 min(s,
XLl L ) (2.55)
{E(XlT 1p)2}(2+§)/2 g2+0

where 0> = Var(e;). Then —2log L,»(6y) converges in distribution to a chi-square

limat with 2 degrees of freedom.

Remark 2.3.1. The conditions (2.54) and (2.55) can be rephrased as X7 Xje¢ and
XT1,¢ satisfy condition (P).

Remark 2.3.2. The distributions of X; varies with n as the dimension of X; changes
with n. In general, the distribution of the error term e; may also change with n and

thus the moments of €; may not be constants.

Remark 2.3.3. Theorem 2.3.1 deals with large p since the high-dimensional model is
of our interest. When p is small and fixed, the traditional empirical likelihood test
L, defined in the introduction may perform better since the sample size in our test
is n/2 instead of n.
Remark 2.3.4. In Theorem 2.3.1, the condition that ¥ is positively definite simply
requires the random variable X; not to be degenerate. Conditions (2.54) and (2.55)
may impose some restriction on p implicitly.

In the following we will give two examples where little restriction on p is required.

Example 2.3.1. Let X; be a Gaussian random vector with mean 0 and covariance
matrix ¥ = (0;;)1<ij<p, where X is an arbitrary p by p positively definite matrix.

Assume E(el) /gt =0(m'/?), then conditions (2.54) and (2.55) hold.
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Example 2.3.2. Assume (Xi,---,X,) and (€1, - ,€,) satisfy (A), then conditions
(2.54) and (2.55) hold.

The proof of the examples will be put in Section 2.3.4.

Remark 2.3.5. Example 2.3.1 assumes a special dependence structure and it is a
special case of (B). Similar to the test in Chapter 2.2, condition (B) is sufficient for

Theorem 2.3.1.

Remark 2.3.6. One advantage of the proposed empirical likelihood method is that one
can easily add more equations if one has more information on the alternative hypoth-
esis, or replace W7 (/3) by another statistic W1 (3) satisfying EW,(8) = O(||8 — Bol])-
Although adding more relevant equations may improve the test power, computing the
empirical likelihood function becomes more complicated. The simulation study in the
next section shows that the test using EW;(8) = 0 and EW}(5) = 0 in Theorem 2.3.1

performs well in terms of both size and power in the dense model.
2.3.3 Simulation study

In this section, we examine the finite sample behavior of the proposed empirical
likelihood test and compare it with the Hotelling’s 7% test and the standard empirical
likelihood method in terms of both size and power.

Draw 10,000 random samples with size n = 200, 500 from the linear model (2.50)
with X; = (X1, -+, X)T ~ N(0,%0), X9 = (0.5070) ;i) € ~ tg and B =
Bo +6/v/n, By = 1,. Consider testing Hy : = [y against H, : 3 # 5. We use ELI,
EL2 and HT to denote the empirical likelihood tests —2log L,1(3), —2log L2(3) and
the Hotelling’s T test in (2.51), respectively. We compute the powers of these three
tests and plot them against different p at levels 0.1 and 0.05 in Figures 2.1-2.4. Note
that 6 = 0 corresponds to the size of the tests.

From the first plot of each figure we find that the traditional empirical likelihood

method and the Hotelling’s T2 test do not have a consistent size when p is slightly
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large, while the proposed empirical likelihood test has a very stable size with respect
to p. The other three plots in each figure show that the proposed empirical likelihood
method is powerful too. Note that the power for the traditional empirical likelihood
method and the Hotelling’s 72 test do not make much sense for a slightly large p
since their sizes do not converge to the nominal levels. When n becomes large, the
proposed empirical likelihood tests have more accurate size.

In summary, the proposed empirical likelihood test has a very stable size with
respect to the number of covariates and are powerful too. The proposed new tests are
easy to implement by using the R package emplik, which does not need to compute

the inverse of a high dimensional covariance matrix.
2.3.4 Proofs

Throughout we denote

op =+/Var(u;) and oy = +/Var(vy).

Then it is easy to verify that E(u;) = E(v1) = E(uyv1) = 0. One can also easily show

that conditions (2.54) and (2.55) are respectively equivalent to

E|u1|2+6 B

54+min(6,2)
o =o(m 1 ), (2.56)
01
and
E|vy ‘2‘“5 54min(5,2)
e (m— ). (2.57)
2

Lemma 2.3.2. Under conditions of Theorem 2.5.1, we have

Lm f: (:) 4 N(0, L), (2.58)

g2

A ) (2.59)
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n=200, delta=0, nominal level=0.1 n=200, delta=0.1, nominal level=0.1
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Figure 2.1: Powers of tests are plotted against p = 2,4, --- ,100 with level 0.01 and
n = 200.
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n=200, delta=0, nominal level=0.05
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Figure 2.2: Powers of tests are plotted against p = 2,4, --- ,100 with level 0.05 and
n = 200.
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n=500, delta=0, nominal level=0.1 n=500, delta=0.1, nominal level=0.1
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Figure 2.3: Powers of tests are plotted against p = 2,4, -, 100 with level 0.01 and
n = 500.
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n=500, delta=0, nominal level=0.05
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Figure 2.4:
n = 500.
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S o
Si=17 1P,

2.60
mo3 (2.60)
2z Y% v (2.61)
mao109
vy 1/2 2 1/2
lrg%lo_ | = 0p(m™’7) and lrgglo_ | = op(m/7), (2.62)

where 15 is a 2 X 2 identity matrix.

Proof. Note that u; and v are uncorrelated. To show (2.58) we need to prove that

for any constants a and b with a® + b* # 0,

1 m
ﬁz a——i—b N(O,a2+b2).
i=1

Apparently {a + b”l 1 < ¢ < m} are independent and identically distributed
random variables with variance a? 4+ b?. Therefore we shall verify the Lindeberg
condition for the triangular array {a +br1 < < m}. It suffices to show the

Lyapunov condition
Vi 1246
2+5)/2 ZEM b =0 (2.63)
holds. This follows from the fact that the left-hand side of (2.63) is dominated by

mE|a¥ + po|2+9
| o1 02| (|a| + |b|)2+6 E|ﬂ|2+6+E|ﬂ|2+6 1
m+9)/2 = o1 o2 o2

5+ min(4,2) _ s
1 2 )

N

= o(m

= o(1).

To show (2.59), we need to estimate E| > " | u? — mo?|2+9/2. We have from von
Bahr and Esseen [98] that
B> uf - mof*9% < 2Elud — B)|E — OBl ™) (264

=1

if 0 < 6 <2, and from Dharmadhikari and Jogdeo [28] that

E| ZU?—mO%’(Q—’_é)/Q < C’m(2+5)/4E|u%—E(u%)|(2+‘s/2) _ O(m(2+6)/4E"U,1|2+6) (265)
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if 0 > 2. Therefore, by (2.64), (2.65) and (2.56), we have for any £ > 0

2o U
IP’(I—lz

—1] > ¢)

< 2-|—6)/2]E|Zz 1 u; 77"U2|(2+5)/2
— ( )(2+5)/2

_ O(m—(5+min(5,2 /4E|ﬂ|2+5)

= o(1),

which implies (2.59). Similarly we can show (2.60) and (2.61). Equation (2.62) follows
from the Lyapunov condition (2.63) by letting a =1 and b =0 or a = 0 and b = 1.
This completes the proof of the lemma. O
Proof of Theorem 2.3.1. Set Z; = (u;/o1,v;/02)T for i = 1...,m. It follows from

Lemma 2.3.2 that

\/——Z 5 N(0, 1), (2.66)
1
IIEZZi(Zi)T — Ll %o, (2.67)
1/2
Jax |Zi|| = op(m™77). (2.68)

Put p = (p1, p2)t = (b1o1, baos)? with by and by being given in (2.52) and (3.34).
Then we have

—2log L2(5o) =2 Zlog(l + 072y,

i=1

where p solves
m

7.
aa——Y 2.69

Similar to the proof of (2.14) in Owen [72] we can show \/p} + p3 = O,(m~1/?).
Then it follows from (2.68) that

max ||
1<i<m ' 1+ pT'Z;

| = 0p(1).
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By (2.69), we have

0 1 < o'z
mé=1+p"Z
1 T (0" Z;)?
_ 1 i TZ i( TZ)2+ 1 i (pTZZ)3)
T P m 1+ o772

which implies
1 1+ 0,(1))
— Z p"Z; = (A Z(PTZi)Q- (2.70)
Using (2.69) and (2.67) we obtain
I~ %
0= Z 14972,

= _ZZ — pZi + (TZT)Z)

n Z TZ 2
SE O EED WA Dl
— —ZZ ——ZZ Vp+0, ( ||1—|—pTZ||_Z( )2>

IS LS (e

= —ZZ——ZZ Tp+ 0,(m™Y?)

which implies

p= (ézz(zf) %Zzi+op<m‘”2>- (2.71)

i=1
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Finally by using Taylor’s expansion, (2.70), (2.71), (2.66) and (2.67) we obtain

—2log Lna(fo) = 2 ZpTZi — (14 0,(1)) Z(PTZi)z)

=1

= (1+0,(1))p" ( Zz’(Zi)T> p
i=1
m m -1 m
= (oM =Y"2) (S 227 =3 Z+o,1)
’ vm i=1 M3 vm i=1 ’

d

=G
This completes the proof of Theorem 2.3.1. O

Proof of Example 1. Set
(21, ,2,)" =S77°X, and (1, )" = D7V2X.

Then zy,- -+ ,2p, Y1, - - ,yp are independent standard normal random variables. There-
fore we have X; = 2Y2(zy, - 2,)T and X; = 22(yy,--- ,y,)7, and
XTXy = (21, 2p) 8, o 9)" = Z 05 jTiYj-
1<4,j<p
In order to estimate B(X{ X1)*, we set &, 5 jo 50 = E(25,2525525,) = E(Y5,Y5Y5U5)-
Then 0, j, j5.5, 1S equal to 3 if j; = jo = js = jua, 1 if j1, jo, J3 and j4 are two different

pairs of integers, and 0 otherwise.
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Then we have

T~y \4 __
E(Xl Xl) = E E : Uj17l1szJzUj37l3Uj47l45j17j27j3,j45l1,l27l3,l4

1<71,52,J3,34<p 1<l1,l2,l3,l4<p

p
_ 2 2
= 0 (l E : E : Uj17110j17120j27110j2712|> +0 ( E : E Ujl,lajg,l>

J17#j2 LiFle J17#j2 =1

p p p
+0 (Z Z aihail2> + O <Z Z a;-{l>

=1 11l j=1 i=1

p p p p
= 0 |§ § E E O-j1,l10'j1,l20'j27110'j27l2|

Ji=1jo=111=11=1

(£ 55 o ($50)

Ji=1j2=1 [=1 j=1 [=1

= 0 (tr(24)) + 0 ((Z ZUJQXZ)Q>

j=1 =1

= 0 (tr(ZY) + O ((tx(3%))?)
= 0 ((tr(EQ))2> .

We have used the inequality tr(X*) < (tr(X?))%, which follows from the identity

tr(X4) = ?:1 )\é for any positive integer 7, where Aq,---, )\, are eigenvalues of X.
E(X{ X1)!

(tr(%2))?

Similarly, we can show that the first term on the left-hand side of (2.55) is also

Thus we have that = O(1) is bounded uniformly for p.

bounded uniformly for p. Therefore, conditions (2.54) and (2.55) will be fulfilled with
§ = 2 for any p if E(e})/0* = o(m!/?). O
Proof of Example 2. It follows from the same argument in the proof of Corollary

2.2.2. [l

2.4 Tests for High-dimensional Covariance Matrices

Testing covariance structure is of importance in many areas of statistical analysis, such
as microarray analysis and signal processing. Conventional tests for finite-dimensional
covariance can not be applied to high-dimensional data in general, and tests for high-

dimensional.covariance in the literature usually depend on some special structure
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of the matrix. In this section, we propose an empirical likelihood method to test
the covariance matrix by simply splitting the data into two groups. The asymptotic
distribution of the new test is independent of the dimension. A simulation study
shows that the new test has a very stable size with respect to the dimension and it
is also more powerful than the test proposed by Cai and Jiang [12] for testing the

bandedness of a covariance matrix in the dense model.

2.4.1 Introduction

Let X; = (Xi1,...,Xip), @ = 1,2,...,n be independent and identically distributed
(ii.d.) random vectors with mean p = (u1, ..., ft,) and covariance ¥ = (0y)1<; j<p-

Testing covariance matrix
H() Y= 20 against H1 X 7& 20 (272)

is an important problem in statistical inference and applications. There has been a
long history for the study of this problem. Traditional methods for testing (2.72) with
finite p include the likelihood ratio test (see Anderson [1]) and the scaled distance

measure defined as

V= %tr(Sn - 1p>2, (2.73)

where tr(-) denotes the trace of a matrix and S, is the sample covariance matrix of
Yo e (see John ([49, 50]) and Nagao [67]). When dealing with high-dimensional
data, the sample covariance in the likelihood ratio test is no longer invertible with
probability one and the tests based on a scaled distance may also fail as demonstrated
in Ledoit and Wolf [62].

Since the above conventional tests can not be employed for testing high-dimensional
covariance matrix, new methods are needed. When the high-dimensional covariance
matrix has a modest dimension p compared to the sample size n, i.e. p/n — c for
some ¢ € (0,00), Ledoit and Wolf [62] proposed a test by modifying the scaled dis-

tanceaneasuredefined in (2.73) under the assumption that X is a normal random
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vector. When the dimension p is much larger than the sample size n, some special
structure has to be imposed. Chen, Zhang and Zhong [18] proposed a test which
generalizes the result of Ledoit and Wolf [62] to the case of non-normal distribution

and large dimension by assuming that
Xi=TZi+p

for some i.i.d. m-dimensional random vectors {Z;} with EZ; = 0, var(Z;) = I,,,, and
" is a p X m constant matrix with I'T7 = 3.

Another commonly employed special structure is sparsity. High-dimensional sparse
data setting, where dimension p is larger than the sample size n, is frequently encoun-
tered in signal processing and gene expression experiments, see for example Sebastini,
Gussoni, Kohane and Ramoni [89]. Estimating covariance matrix with sparsity has
been actively studied in the recent years. Some recent references are Bickel and Lev-
ina [9], Cai, Zhang and Zhou [14], and Cai and Liu [11]. When the sparsity assumes
that the covariance matrix has a desired banded structure, it becomes important to

test whether the covariance matrix possesses such a desired structure, i.e.
Hy:0;=0forall |i —j| >, (2.74)

where 7 < p is given and may depend on n. Recently, Cai and Jiang [12] proposed to
use the maximum of the absolute values of sample covariances to test (2.74) when X,
has a multivariate Gaussian distribution. However, it is known that the convergence
rate of the normalized maximum to a Gumbel limit is very slow, which means such a
test is not powerful in general.

To get rid of the sparse structure and normality condition in the testing problems
(2.72) and (2.74), we propose to construct tests based on the following equivalent

testing problem. Write
_ T
a= (011,01, 021, -« -, O9ps oo, Oply e oy Opp) -
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Then testing Hy : ¥ = X =: (07}) is equivalent to testing

| 0 0 0 0 0\T
a=ag:= (071,00, 091,09,y Oprseny Opp) (2.75)

Put V; = ((Xa — ) (X — ) (Xip — 1), (Xip — p12)(Xix — ), (X —
)3t i =1,...,n. Based on the fact that EY; = a, one can employ the well-known
Hotelling T2 statistic for finite p or its modified versions for divergent p under some
specific models to test (2.75); see for example Bai and Saranadasa [5] and Chen and
Qin [16].

Another popular test for a mean vector is the empirical likelihood method pro-
posed by Owen [71, 72]. Unfortunately, the asymptotic distribution of the empirical
likelihood ratio test depends on whether the dimension is fixed or diverges; see Hjort,
Mckeague and Van Keilegom [45].

Motivated by the empirical likelihood method in Peng, Qi and Wang [78] for
testing a high dimensional mean vector, we propose to apply the empirical likelihood

method to the following two equations
E[(Y1 — a¢)" (Y2 — ag)] = 0 and E[1,(Y1 + Y3 — 2a)] =0, (2.76)

where 1,2 = (1,...,1)T € R””. The first equation in (2.76) ensures the consistence
of the proposed test and the second equation in (2.76) is used to improve the test
power, since using only the first equation will lead to a poor power by noting that
E[(Y1 —ag)T(Ya—ay)] = O(6?) rather than O(9) if ||E(Y; —ay)|| = O(6), where ||-|| is
the Euclidean norm for a vector. It turns out that the proposed empirical likelihood
test puts no restriction on the sparse structure of the matrix and normality of Xj.
When testing (2.74), a similar procedure can be employed; see Section 2 for more
details.

The rest of this section is organized as follows. In Section 2.4.2, we introduce
the new methodology and present the main results. A simulation study is given in

Sections2:4:3--Section,2.4.4 contains the proofs of the main results.

62

www.manaraa.com



2.4.2 Methodology

Testing covariance matrix. Let X; = (X;1,...,X;,), ¢ = 1,...,n be independent
and identically distributed observations with mean g = (g, ..., p,) and covariance
Y = (0yj). Instead of testing the covariance matrix hypothesis (2.72) directly, we

consider testing a p-dimensional vector a, i.e., testing

: _ T
Ho.a = (0—117-'-7Ulp70217"-70_2p7--'70—p17"->0-pp)
_ 0 0 0 0 0 0T _.
= (001 01y Og1s 3 Oy oo, Oy, ) = .
When p is known, for i = 1,... n, we define

Yy = (X — m)? -y (X — i) (Xip — ), (X — o) (Xiy — ), -+, (Xip — 1))

Then E[(Y; — ag)T(Ya — ap)] = 0 is equivalent to Hy : (a — ag)’(a — ay) = 0,
which is equivalent to Hy : @ = ag. A direct application of the empirical likelihood
method to the above estimating equation results in a poor power as explained in the
introduction. A brief simulation study confirms this fact. In order to improve the test
power, we propose to add one more linear equation. Note that with prior information
on the model or more specific alternative hypothesis, a more proper linear equation
may be obtained. With no additional information, any linear equation that detects
the change of order ||a — ay|| is a possible choice theoretically. Here we simply choose
the following functional 152 (Y1 4+ Y5 —2ay). More specifically, we propose to apply the

empirical likelihood method to the following two equations
E{(Y1 —a¢)"(Ya—ag)} =0 and E{1L(Y1+Y;—2a0)} =0.

Of course one can try other linear equations or add more equations to further improve
the power. Simulation study in Section 3 shows that with the above two estimating
equations, the proposed test performs well in terms of both size and power.

In order to obtain an independent paired data (Y7,Y5), we split the sample into

two.subsamples.with.size N = [n/2]. That is, for i = 1,2,..., N, we define R;(a) =
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(e;(a),vi(a))T, where
ei(@) = (Y; — a)’ (Yisn — a) and vi(a) = 1(Y; + Yiey — 2a).

Based on {R;(a)},, we define the empirical likelihood ratio function for a as

—sup{H Np;) : sz—Isz a)=0,p1 >0,...,py > 0}. (2.77)

When i is unknown, instead of using { R;(a)}¥,, we use { R} (a)}Y | where i is re-

placed by the sample means. That is, put X X1 = == ZZ , Xij and X X2 = == ZZ N1 X

for y =1,...,p, and define

Y = (Xa— XD, (X — XD (Xp— X)), (X — XD (X = XT), .. (X — X))

? p

fori=1,...,N, and

Vi = ((Xa—X32)% .., (X = X2)(Xip— X2), (X — X3) (X — X3), ..., (Xip— X2))"

(2

fori=N+1,...,2N. Put R}(a) = (¢(a),vi(a))”, where

¢i(a) = (Y7 — a) (Vi y —a) and vj(a) = 1(Y] + Y}y — 2a).

Similar to (2.77), define the empirical likelihood ratio function for a as

N

Ly(a) = sup{H(Npi) : sz- =1, sz-R;‘(a) =0,p1 >0,...,py > 0}. (2.78)

i=1
Let ¢ = p* and © = (6;j),x, be the covariance matrix of Y7, i.e., © = E[(Y; —
a)(Yi—a)"]. Then E(ej(a)) = 37, X771, 07, and E(vi(a)) = D27, >°0_, 0;. First we

show that Wilks” Theorem holds for the above empirical likelihood methods without

imposing any special structure. Note that in the following theorems, the condition

ooy = E(3S)_ Xi;)? > 0 simply means that e)(a) and vi(a) are not
constants.
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Theorem 2.4.1. Suppose that Z‘f:l L_10ij > 0 and for some 6 > 0,

2+5

maX{E\e |2+5/(ZZG)  Elvi(a |2+5/(ZZOU) }_o N9 79)

i=1 j=1 i=1 j=1

Then both —2log Li(ag) and —2log La(ag) converge in distribution to a chi-square

distribution with two degrees of freedom as n — oo.

Remark 2.4.1. (2.79) can be interpreted as e;(a) and v;(a) satisfy condition (P).

Using Theorem 2.4.1, one can test Hy : ¥ = X against X # Y. Condition (2.79)
. N N

ensures that the central limit theorem holds for \/LN > i, ei(ag) and \/Lﬁ > sy vilag),

Similar to Section 2.2 and 2.3, the conditions in Theorem 2.4.1 can be simplified by

imposing some conditions on the moments and dimension of X;. Note that here the

sample {Y;} is of size p*.

Corollary 2.4.2. Suppose Y; satisfy (A), then both —2log Ly(ag) and —2log La(ay)
converge in distribution to a chi-square distribution with two degrees of freedom as

n — oQ.

Theorem 2.4.3. Suppose { X} satisfies condition (B’) with 3 7_, >>0_ 045 > 0. Then
both —2log L1(ag) and —2log Ly(ag) converge in distribution to a chi-square distri-

bution with two degrees of freedom as n — oo.

Remark 2.4.2. For testing H, : X = I,, where I, denotes the p x p identity matrix,
Chen, Zhang and Zhong [18] proposed a test based on the above model and required
p — 00 as n — o0. In comparison, the proposed empirical likelihood method works

for both fixed and divergent p.

Testing bandedness. Suppose {X;} is a sequence of i.i.d. normal random vectors
with mean zero and covariance ¥ = (0;;)1<; j<p- Cai and Jiang [12] proposed to use
the maximum of the absolute values of the sample correlations (called the coherence)

to test a banded structure

Hy:0,=0forall |i —j| >, (2.80)
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where 7 < p. It is known that the rate of convergence of coherence to a Gumble
distribution is very slow in general, which results in a not powerful test. Here we
modify the proposed empirical likelihood method to test the above banded structure
as follows.

Define
Y = (X0 Xi140), - X1 Xips XioXi@rrys -« s Xip-n Xip) 5 L =1,...,m,

a = (01(1+T), ey O1py O2(247) 5 - - - ,J(p,T)p)T and CLBT = (0,0,...,0) € R(p_T)(p+1_T)/2,

then testing (2.80) is equivalent to testing Hy : @’ = ay,. As before, define

ej(a’) = (V) —a')' (Yy,; — a'), (2.81)
and
Uzl'(a’/) = 1:(1;2—T)(p+1—7')/2(y;/ + Y]<f+z - 20’/)' (282)

Based on R;(a’) = (¢}(a’),vi(a’))T, we define the empirical likelihood function for a’

(2 ? 7

as
N N N
Ly(a’) = SUP{H(NZ%) : sz' =1, ZPiRE(a/) =0,p; >20,i=1,...,N}. (2.83)
i=1 i=1 i=1

Theorem 2.4.4. Suppose that X; follows the model of Cai and Jiang [12], i.e., X; ~

N(0,%). Assume C; < liminf, . minj<;<, 0y < limsup,_,. maxj<;<, 0, < Cy for

some constants 0 < C; < Cy < 00, and T = o(mln{(giiﬁzj")bz, (P icijep i) Y.

Then under Hy in (2.80), —2log Ls(ay) converges in distribution to a chi-square dis-

tribution with two degrees of freedom as n — oo.

Remark 2.4.3. The test in Cai and Jiang [12] requires that 7 = o(p®) for all s > 0,
logp = o(nl/ 3). However, the new test only imposes conditions between 7 and p.
Note that with more information on the higher-order moments of X;, one can impose
conditions such as (2.79) in Theorem 2.4.1 for €, and v to test the bandedness so

that,the.normalityassumption is not required.
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The condition 7 = o(}_,; e, Uij/(21<ij<p|‘7ij|)l/2) is sometimes difficult to
check. Next we remove this condition in the above theorem by choosing a differ-
ent linear equation in defining v} in (2.82). More specifically, define

t p t p
vi(a’) = Z Z (XanXij — onj) + Z Z (XnrikXNyij — Okj), (2.84)

k=1 j=t+r k=1 j=t+r

where t = [(p — 7)/2]. Based on Rz(a’) = (el(a’),vi(a’))’, we define the empirical

K3 [ )

likelihood function for a’ as
N N N
Ly(a’) = SUP{H(N]%') : Zpi =1, ZpiRi(a’/) =0,p; >20,i=1,...,N}. (2.85)
i=1 i=1 i=1

Theorem 2.4.5. Suppose that X; follows the model of Cai and Jiang [12], i.e., X; ~
N(0,%). Assume Cy < liminf,, . minj<;<, 0y < limsup,_,. maxj<;<, 0 < Cy for
some constants 0 < Cy < Cy < 00, and 7 = o((X,<; j<, 05;)"/?). Then under Hy in
(2.80), —2log L4(ay) converges in distribution to a chi-square distribution with two

degrees of freedom as n — oo.

Remark 2.4.4. From the proof we can see that the above theorem holds for any
choice of t. Different ¢ can be chosen to improve the power of the proposed test,
based on some prior information. Since T = o(p'/?) implies 7 = o((3_;<; <, 75)"?),
the proposed test imposes much weaker conditions on 7 and p than those in Cai and
Jiang [12].

Power analysis. In the following we study the power analysis of our new tests.

Denote w1y = 371, 370, 05 = E(el(a)), ma = 2370, 370, 0y = E(vi(a)),

=1 "1J

G = (@ —ao)" (a — ao)/ /71 = tr((S — Xo)*)/v/Tux

and

Guo = 217 (@ — ag)/ /T = 217 (S — So) 1,/ /7.
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Theorem 2.4.6. In addition to the conditions of Theorem 2.1, if Hy : a # ag holds

with
G = o(1), (2.86)

then
P{—=2log Li(ay) > &—a} = P{x3, > &—a} +0(1) (2.87)

to as m — oo, where X3, is a noncentral chi-square distribution with two degrees of

freedom and noncentrality parameter v = N(C%, + (2,),

Remark 2.4.5. From the above power analysis, the new test rejects the null hypothesis
with probability tending to one when /n(,1 or /n|C.e| goes to infinity. Note that
the test given in Chen, Zhang and Zhong [14] for the identity hypothesis Hy : ¥ = I,
against H; : ¥ # I, requires np;, — oo which is equivalent to p,,, — 0 where

1
mmziﬂKE—%V%

B tr(X3?)
T n((E - LR

See (3.4) and the proof of Theorem 4 in Chen, Zhang and Zhong (2010). When

model (B) holds, /71, = O(tr(X?)) (similar to the proof of Lemma ?7), therefore the
condition ps, — 0 1is exactly n¢,; — oo. Our test requires max(v/n¢u1, v/n|Gnz2|) — 0.

Thus, our test may have a better power or a worse power in different settings.
Remark 2.4.6. For the tests for the banded structure introduced in Theorems 2.4.4
and 2.4.5, we have similar power results.

2.4.3 Simulation study

In this section we investigate the finite sample behavior of the proposed empirical
likelihood test in terms of both size and power, and compare it with the test based

d Jiang [12] for testing a banded structure.
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Draw 2,000 random samples with sample size n = 200 or 500 from the random
variable Wy + (6/+/n)%*Ws, where Wy ~ N(0, (0ij)1<ij<p), 0ij = 0.5 (i — j| < 7),
Wy ~ N(0,1,x,) where 1,, is a p x p matrix with all entries being 1, and W is
independent of W5. We are interested in testing the banded structure Hy : 0;; = 0
for |i — j| > 7. We consider 7 = 5 and increase p with a step 5 from 10 till 200. We
also take 7 = 20 and start with p = 25 since p > 7 is required. We plot the sizes
(0 = 0) and the powers (6 = 0.1,0.5) against p for the proposed empirical likelihood
tests based on both Theorems 2.4.4 and 2.4.5, and the test based on maximum in
Cai and Jiang [12] in Figures 2.5-2.8. In each figure, the solid line, dashed line and
dotted line represent the proposed empirical likelihood tests based on Theorems 2.4.4
and 2.4.5, and the test based on maximum in Cai and Jiang [12], respectively.

From these figures, we observe that i) panels in the first row of each figure show
that the proposed empirical likelihood tests have a more accurate size than the test
in Cai and Jiang [12], and the size for these three tests becomes accurate when the
sample size increases; ii) panels in the second and third rows of each figure show that
the proposed empirical likelihood tests are much more powerful than the test in Cai

and Jiang [12].
2.4.4 Proofs

Without loss of generality, we assume o = 0 throughout. For simplicity, we use || - ||
to denote the L, norm of a vector or matrix and write e;(ag) = ¢;, v;(ag) = v; and

ef(ag) = e}, vi(ag) = vi. We first show some lemmas.

Lemma 2.4.7. Under the conditions of Theorem 2.4.1, we have

\/_ Z <W ﬁ)T 4, N(0, 1) (2.88)

and

*

\/_1N > (\/% %)T —5 N(0, Iy), (2.89)

i=1
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Figure 2.5: Powers of tests are plotted against p = 10,15,...,200 with levels 0.05
and 0.1 for n = 200 and 7 = 5.
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n=500, tau=5, delta=0, level=0.05 n=500, tau=5, delta=0, level=0.1
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Figure 2.6: Powers of tests are plotted against p = 10, 15, ..

and 0.1 for n = 500 and 7 = 5.
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Figure 2.7: Powers of tests are plotted against p = 25,30,...,200 with levels 0.05

and 0.1 for n = 200 and 7 = 20.

72

www.manharaa.com



n=500, tau=20, delta=0, level=0.05 n=500, tau=20, delta=0, level=0.1
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Figure 2.8: Powers of tests are plotted against p = 25,30,...,200 with levels 0.05
and 0.1 for n = 500 and 7 = 20.
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where I is the 2 x 2 identity matrixz. Further,

O
su=li Py,
N7T11
N 2
. Vs
Zz_l ) _1 P 0’
N7T22

S et
i=1 1Y p 0’
N\/W117T22

max |e; /1| = 0,(N'?),

1<i<N

max [ej//711| = 0p(N'/?),

1<i<N

S
=1 "1 _ 1 P O7
N7T11
N *2
R O
Zz_l K3 o 1 P 0’
N7T22

N k%
Zi:l €Uy p

=l D),
N\/W117T22

max |v;/v/Taz| = 0,(N'/?),

1<i<N

max |v}/y/Ta| = 0,(N'/?).

1<i<N

*

(2.90)
(2.91)

(2.92)

(2.93)

(2.94)

Proof. Since the proofs for the sequence {(e}, v)T} are similar to those for {(e;, v;)*},

17 71

we only prove the cases of {(e;,v;)T}. It is easily seen that Ee; = Ev; = Elejvy] = 0

and

q q q q
Eegzzzggj:ﬂ'n, EU%ZZZZQij:Wﬂ'

i=1 i=1

i=1 =1

Thus, by the Cramer-Wold device, for proving (2.88), it suffices to show that for any

constants ¢, d,

N
1 €; V;
— c—— +d—

Since {ce;/\/m11 + dv;/\/T22} is an i.i.d random sequence with mean zero and

) L N(0, 2 + ).

V; 246

N
1 €;
N(210)/2 ; E‘C o

(&

+d

L 42

V722

240

— NTPE|c
V711

_ 22+5N—5/20(N

V22
< 21+6N—6/2“C|2+5E|61/ /_7T11|2+6+|d|2+6E|1)1/ /_7T22|2+5]

5+ min{2,6}
4

) = o(1),

74

www.manharaa.com

(2.95)

(2.96)



(2.95) follows from Lyapunov central limit theorem.
Next, we show the first equation in (2.90). Since Ee? = 7y, by von Bahr-Esseen’s

inequality [98] we have for any 0 < 6 < 2,
E| Z — )| @2 <ANE|e? — 7y, |3T9/2 = O(NE|e;|*) (2.97)
and when § > 2, it follows from Dharmadhikari, Fabian and Jogdeo [27] that

N
B[ Y (€] — m)| T2 < CNCHAE| e} — 7y |#H/2 = O(NEH/AEe, [79). (2.98)
=1
By (2.97), (2.98) and (2.79) we get

N
E| 2(612 - 7T11)|(2+6)/2 _ O(N(2+max{2’6})/4E|61’2+5) _ 0((N7711)(2+5)/2)- (299)

It follows from (2 99) and Chebyshev’s inequality that for any ¢ > 0,

(‘ Z N7T11 — 1‘ > 5) N’ﬂ'llg) (2+6)/2E|Z ¢ —7r11)|(2+5)/2 (1)7 (2.100)

=1

which 1mphes the first equation of (2.90).

Since E(e;v;) = 0, similar to (2.97) and (2.98), we have
N
E| Z ey 302 = O(NETma(28D/AE)¢ g, |(240)/2)

= 0 (N(2+max{2,5})/4(E|61 |2+6)1/2(E|61 ‘2-&-5)1/2)

which implies the first equation of (2.92) by using the Chebyshev’s inequality. Equa-
tion (2.93) follows from (2.96) by letting ¢ =0,d =1 or ¢ = 1,d = 0. O
Lemma 2.4.8. Under conditions of Theorem 2.4.3, we have

Eei/(Ee})? = O(1) and Ev}/(Evi)? = O(1).

Proof. Without loss of generality we assume p = 0. Since 0;; = E(X1,X4;), we have

p p 4
Be} = E{ DD (XuiXyy = o) (XX nsy — Uz‘j)}

=1 j—1
P p
< 256E{ Z Z XlinjXN+1,z’XN+1,j}4
—1 j—1
8
3 {E(HXUZ)}Q =256 Y [Tl i)

0150588 <P =1 1<i1,...,i8<p
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Write I' = (9ij)pxm and U; = Zy; for i = 1,...,m. Then var(X;) = X = (04))pxp =
I'TT and it follows from (B’) that

m
Xli = Z’%]’Uj, = 1,.. P,
7=1

T(il, ce ;7;8) =K (H (Z’%”UJ>> .

By (B’), we know that

and

implies each value of a; appears at least twice in the sequence aq, ..., ag. Denote
Blz{(ah"'yal) 01 Sal,...,al S’In}7

and let Sy be the set of k-permutations. Then

T(iy,...,1g)
= ) > VhsaVhaa Vhsh Viab Vs Vhoe Vrrd Visa E(Us Uy UZUR)
(a,b,c,d)EB4 (k:l ..... kg):U(il ..... ig),
€Sy
+ Y > Vhra Voaa Vhaa Veab Vs Veob Vere Vs E(UG Uy UZ)
(a,b,c)eBs3, (k1,...,kg)=0(i1,...,ig),
a#b o€Ss

= Tl(ila B 7i8) +T2(Z'1> SR 77:8)'

In the following we denote A = I''T" = (\;;)mxm and let L be the uniform bound
’’’’’ —o(i1,is), oSy CONSIsts of at most 8!

terms, and for each choice of {ky, ..., ks} (for example, k; = iq,..., ks = ig), we get

the same value of

Z Z Vi1 a7k2a7k3b’7k4b7k5c'7k60’7k7d’7k8dE(Ug Ub2 Uc2 Ug)

1<iy,..,is<p \ (a,b,c,d)EB4
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Hence

> TP, ... is)

1<iy,...,ig<p
(81)? Ny A RN
. YiraYira! YisaYisa! - - - VirdVizd Vigd Visgd'
1<ia,...,i8<p (a,b,c,d)€ B4 (a’ b’ ¢/, d')EBy

xB(U2URUUNE(UZUZUAUS)

IA

= (8 ) > Qe dww A daa BV UZUE(ULUR U U

(a,b,c,d)€By (a’ b, ,d')EBy

< (8')2L2 Z Z ()\aa’)\bb’)\cc’)\dd')2

(a,b,c,d)€B4 (a’ b ' ,d')EBy

= om( X w)

1<a,a’<m

= O((t(A%)") = O((tx(2%))"). (2.101)

Similarly,

Z T22(21a7@8)

1<iy,...,ig<p

O(l) Z Z Z YiraYira! VisaViza! VisaVizal - - - VigcVige!

1<iy,..,i8<p (a,b,c)€B3 (a’ b/ ,¢')EB3

= 0(1) Yo Y AL

(a,b,c)eB3 (a/,b/,c')EB3

=o(( X ) X Pawl))

1<c¢,d/<m 1<a,a’,b,b’<m

= o(MO(( X MALGL X))

1<a,a’,b,b’<m

= owo(( X M) X ))

1<a,a’<m 1<b,b/<m

— O(tr(A?)(tr(A2))?) = O((tr(£2))Y). (2.102)

IN

Thus by (2.101) and (2.102),

Eej <256 Y T%(iy,...,is) = O((tr(5%))*). (2.103)

1<iy,...,i8<p

On the other hand, let V; = Zy41,; for ¢ = 1,...,m and then

m m m m D P 2
Eel = E Z Z Z Z Z Z YiaVipVieVia(UaUp — 6ap) (VeVa — 5cd)>

b=1 c=1 d=1 i=1 j=1
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Denote C' = min{E(U? — 1)1} > 0. Note that if ¢ # a or d # b,
]E((Uan - 5ab)(UcUd - 5cd)) - E((‘/a% - 6ab)(‘/cv:i - 5cd)) =0.

Thus,

m 2
EG% = E[ Z Z r)/iaf)/jb’y’ic’)/jd> (Uan_(sab)2(‘/::‘/d_5cd)2

abed=1 \1<i,j<p

NE

2

( Z ’Ym’)’jb%c’m> c?

1<i,j<p
P

= C° Z Z Z Z 0@1120]132

11=1j1=112=1 jo=1

= CO*(tr(%?))% (2.104)

a,b,c,d=1

Therefore,

Eel/(Ee?)? = O(1).

Next, we show that Evf = O((Ev})?). It is easy to verify that

Evl = (Zp:

=1

4
(X1 X1 + Xni1,i X N4 — QUij)>

s .
||M~s
I

IN
S

4
16E Xlinj - Jij))

=

,_n

Jj=

'M“

Il
—

< 256E (

4
Z XUXU)
j=1

T(iv,. .. is).

(2

256

<

(]

1<i1,...,18<p
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Similar to (2.101), we can show that

> Tiliy, ... is)

1<i1,...,18<p

8! Z Z YiraVisa - - - '7i7d7isdE(U3Ub2Uc2U3)

1<is,..,i8<p (a,b,c,d)EB4

= gl Z (i’\i“> (i:M;) (i&c) (ZP:A“> E(UIUUZUY)

(a,b,c,d)€B4 i=1

IN

1<4,5<p
For Ty(iy,...,1is), we have
> Doliy, ... is)
1<iy,...,is<p
= 0(1) Z Z’}’m Zf}/jb Z’ch
(a,b,c)eBs, =1 j=1 k=1
a#b
m P P P P m p
< [ Z Z'Y Z’Y]b 27111 ny]b )] (Z 27k0)2)
a=1 b=1 =1 7j=1 =1 j=1 c=1 k=1
m  p
= o[(XX W) =ow( X a)"
a=1 =1 1<4,5<p
Therefore,

Evi=0 (( 3 aij)4> . (2.105)

1<i,j<p

On the other hand, similar to (2.104), we have

Ev; > > (ZZ%W@) (UaUp = 0ap)”

1<a,b<m =1 j=1
m p

C’(Z ijp;%a%a)Q

a=1 i=1 j=
- o(

AV

hS]
bS]

aij)Q. (2.106)

1
i=1 j=1
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Thus, by the condition ), .. 0i; > 0, (2.105) and (2.106), we have
Evi = O((Evy)?).
This completes the proof of Lemma 4.3.

Lemma 2.4.9. Under the assumptions of Theorem 2.4.4, we have
Eel'/(Ee?)? = O(1) and Ev/(Evi?)? = O(1),
where €] = €} (ag) and vy = vi(ay) as defined in (2.81) and (2.82).

Proof. By Isserlis’ theorem, we have

Ee'14 = E{pz:: _Zp: 1 X1; X N+1)iX(N+1)j}4
_ {E(l‘[)(m)}2
=1

1<iy,...,ig<p

(2.107)

1
T Sx6%4%2 Z Z (k1 ks Ohiska Ohs ks Thris )

1<in,..,i8<p (k1,....ks)=0(i1,...,i8),
o€ESg

= 7x5%3 Z azlk20£3k4ai5k6027k8 = O((tr(XH)Y).

1<k1,....ks<p

On the other hand, by Isserlis’ theorem again, we have

oo EE S {n}

ta=1 ja=ta+T1 =1

s
=
Il

—
.
=
Il
.
=

+
\‘
.

p
Z (Uili20j1j2)2

1 p p )
= Z Z Z Z (Jilizajljz)
11=1 ji:|j1—i1|>7 12=1 ja:|jo—ia|>T
- Loy e 3 o2 .
4 Q1o J1j2
i1,42:i1 —i2|<T Ji.ge:ljr—i| 27, |je—iz|>T
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Here, note that when iy — is| < 7,

{Gng2) sl —del <7h € {(nd2) : lh —ial = 7 [ja — 2| > 7}

U{(j1,J2) © [J1 — 1] < 37, |2 — 42| < 37},

Thus
1
2 2 2 2
Eer > 1 Z Tiria Z Tjija — Z T ja
i1,0:]i1 —i2| <7 J1,d2:li1—j2|<T J1,J2:171—11|<37,|ja—i2| <37
2,2
T Z ( Oirig ( Z J1]2 — 367 CZ))
11 ig=1 J1,j2=1
1
= Ztr(EQ)(tr(Ez)—367'2C§). (2.108)

Since 7 = 0o((32,; <, 05)'/?), we have (Ee?)™" = O((tr(X?))~?), which implies that
Eeit/(Ee?)? = O(1), i.e., the first equality in (2.107) holds.

Next we prove the second half of (2.107). Note that

PP A
Bv'} = (Z Z XliX1j+XN+1,iXN—|—1,j))
i=1 j=it+r
4
PP P
< 16E ZZX”XU_Z Z XXy,
=1 j=1 =1 |j—i|<7
PP 4 P !
< 256E< XMXIJ) +256E [ >0 Y XXy,
=1 j=1 i=1 |j—i|<T
=: 256(T] +T). (2.109)

By (2.105), we have

i1=112=1
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On the other hand, it follows from Isserlis’ theorem that
T

1<41,22,13,84 <p |.7l —1 |S7',l=1,...,4

1
- Sx6Gx4x?2 Z Z Z Op1g19p2g20p3q3Opaqa

1<y g i3,i4<p |jl_il|STal:17“'a4 (plaqla'“)p4aq4):0(i17j17'--ai4aj4),
0'6587 |pl_ql|ST7l:17"'74

(2.111)
For a given permutation {pi,qi,...,ps,q} of {i1,j1,...,%4,js}, the number of com-
mon elements in the two sets {|p1 — q1|, ..., |pa — q@|} and {|iz — j1], ..., |ia — ja|} can
be four, two, one and zero. Next we analyze each case.
(i) When there are four common elements, we have
4

Z § : Op1g19p2g20p3qsTpaqs = E § Oij
1<i1,92,23,84<p |j; —4;|<7,1=1,2,3,4 1<i<p |i—j|<T
p D 4
= E E Uz‘j .

=1 j=1
(ii) When there are two common elements, without loss of generality, we assume

D1 — @1 = |in — jils Ip2 — @2 = iz — Jalsps = 3,493 = Ja,pa = 4, qu = Js.

Other possibilities can be shown in the same way. Use the fact that |o;,;,| <
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V011 0jajs < Co for all 1 < 7y, 72 < p, we have

| E E , Op1g10p2g20p3q30paqa |

1<dy 7i2 7i3 7i4 Sp |.7l —1i | ST7l:172,374

p D 2
= E E Oij | E E Ups,q30p4,q4|
=1 j=1 1<i3,i4<p |i3—j3|<7,[ia—ja| <7
p D 2
= E :E Oij | § , E , 0i3,54044,53
i=1 j=1 1<i3,i4<p |i3—3j3| <7, ia—ja| <7,)iz—ja| <7, |ia— 43| <7
p P 2 p p
< E E Oij E E :|ai3,j4| E |0-i4,j3|
i=1 j=1 i3=1js=1 lig—is|<dr,|js—is|<AT
p P 2 p p
2
< D D o) DD ol 87)°C,
i=1 j=1 iz=1ja=1
p P
B 4
= o[ oi)
i=1 j=1

(iii) When there is one common element, using similar arguments as above, we can

show that
p P P P
_ N B 4
E : E , Op1a1Op2gaOpsgsOpags = O (E ,E :UZJ)(E E |Uu|)7'
1<i1,i2,i3,64 <p |j;—ig |[<7,1=1,2,3 4 i=1 j=1 i=1 j=1
p P
4
O o)
i=1 j=1

(iv) When there is no common element, similarly we can show that

p P
_ 2
§ : E : Op1a1Op2020p3gsOpags = O (T E E :lUZJl

1< ig i3, 14 <p |y —i; | <7,1=1,2,3,4 i=1 j=1

bS]

p
= O'

Z=1j 1

Hence, it follows from the above results that

p p

p=0 (D> D e |- (2.112)

i=1 j=1
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On the other hand, we have

12
EU 1
p—T p p—T p 2
- B(Y S (KuXyy + X Xney))
i1=1j1=t1+7 i2=1 jo=tio+T
T

p
> E(Xui Xijy X1, X15,)

>

2.

034152
—ig|<T
Oj1j2
—i]_lST |j2—i2|<7’

p—T p—
= 2> >
11=1j1=t1+7 i2=1 jo=io+T
p=T P p-T
= 2 E E E E (O-i1i20j1j2 + 011 Tigjo + UileUizjl)
11=1j1=t1+7 i2=1 jo=io+T
p p
1
= 5 § E E , Ti1i20j1jo
t1=1|j1—i1|>7 12=1 |jo—iz|>T
1 p p p p p p
P IP I > - DD IEEEDY
11=1142=1 | \1=1g2=1  jo=l1|ji—dir|<r  J1=1|ja—dz|<T  |j1—i1|<7|j2
p p P P
1
PPN DIDIEED DD DD DD DD DD
i1=1lix=1 | \1=12=1  |ji—jo|<7 [i—i1l<T  [j1—ja|<T [j2—i2|<T |f1
1 p p p
2 5 Z Z UlleI Tiyig = Z Z Oj1ja — 2072 Oy
i1=11d2=1 Jj1=172=1
p
1
+=

2

)(p

p
Z Z Oj1ja + 207’202)

J1=1j2=1

p
(Z Z Uilizl(ailiz < 0)
i1=112=1
1 (22 2
(32
11=112=1

Since 7 = O(min{(21§i,j§p aij)/(zlgi,jgp IO'Z']'|)1/2}), it follows that

, p P —2
(Evll)_l =0 (Z_:l Z:l Uiliz)

p P
— 20720, Z Z |Ciyis]-

11=112=1

Therefore, the second equality in (2.107) follows from (2.109)—(2.113).

Lemma 2.4.10. Under the assumptions of Theorem 2.4.5, we have
Ee'/(Ee?)? = O(1) and Et}/(Ev?)? = O(1),

where €| = €| (ag) and v = v} (ag) are defined in (2.81) and (2.84).
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Proof. The first equality follows from the proof of Lemma 2.4.9. To show the second
half of (2.107), let gy = > iy X0 >0, Xy and g2 = >y Xnvni >y X
Then we have that o] = g1 + g2, E(3}) < 16E(g}) and E(02) = 2E(g3).

Note that g; is the product of two Gaussian random variables from a multivariate
Gaussian vector with mean zero. Hence we can write ¢y = A(A + B) where A,
B are independent Gaussian random variables with mean zero, variance a? and b?

respectively. It follows that

Eg; < 16(E(A%) +E(A*BY))

= 16(105a® + 9a*b?)

IN

200(9a® + a*b*)

< 200(3a’ + a®b?)? = 200(Eg?)? = 100(Ed}?)2.

This completes the proof of the lemma. O

Proof of Theorem 2.4.1. It follows from Lemma 2.4.7 and the standard arguments of

empirical likelihood method. |

Proof of Corollary 2.4.2. Tt follows from the argument in the proof of Corollary 2.2.2.
O

Proof of Theorem 2.4.3. 1t follows from Lemma 2.4.8 that (2.79) in Theorem 2.4.1
holds with 6 = 2. Hence Theorem 2.4.3 follows from Theorem 2.4.1. O

Proof of Theorem 2.4.4. Tt follows from Lemma 2.4.9 that (2.79) holds for random
sequence {el} and {v/} with 6 = 2. Hence Theorem 2.4.4 follows from the same

arguments as in the proof of Theorem 2.4.1. O

Proof of Theorem 2.4.5. Tt follows from Lemma 2.4.10 that (2.79) holds for random
sequence {e/} and {0/} with 0 = 2. Hence Theorem 2.4.5 follows from the same

arguments as in the proof of Theorem 2.4.1. O
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Proof of Theorem 2.4.6. Note that under the alternative hypothesis Hy, EY; = a and

for1<i<N,
ei(ag) =ei(a)+ (a—ag)T(a—ap)+ (a—ag)’(V;+ Yy — 2a)
=ei(a)+ (a—ap)(a—ag) + (@ — ap)"(V; + Yy — 2a)
vi(ag) =vi(a)+ 21qT(a —ag) = vi(a) + 212(‘1 — ay),

where ¢ = p®. As a result, we have

(o2 22) = (G )+ (6060) + (ntao)

where n;(a) = (a — ag)T(Y; + Yy — 2a)/\/m11. Since

E[Z ni(a)]? = 4N(a —a¢)'O(a — ay) /71 = 4N(a — ay) O(a — ay)/tr(0?)
= O[N(a - ao)"(a — ao)/y/711],

it follows from condition (2.86) that
ED_ m(a)]’ = o(N).
i=1
Similar to the argument in proving Theorem 3 of Peng, Qi and Wang [78], we see

that to prove Theorem 2.4.6, it suffices to show

\/_ Z (\/7? \/ﬁ)T 4, N(0, ). (2.115)

which follows directly from Lemma 2.4.7. This completes the proof of Theorem
2.4.6. O
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CHAPTER II1

JACKKNIFE EMPIRICAL LIKELIHOOD METHODS IN
RISK MANAGEMENT

Risk-distortion measures, Spearman’s rho and parametric copulas are important quan-
tities in the research of risk management, and the interval estimation for those quan-
tities is known to be challenging. In this chapter, we construct interval estimation for
important quantities in these fields: using the jackknife empirical likelihood methods.

The content in this chapter is mainly based on the following papers.

1. Peng, L., Qi, Y., Wang, R. and Yang, J. (2012). Jackknife empirical likelihood
methods for risk measures and related quantities. Insurance: Mathematics and

Economics, to appear.

2. Wang, R., Peng, L. and Yang, J. (2012). Jackknife empirical likelihood for

parametric copulas. Scandinavian Actuarial Journal, to appear.

3. Wang, R. and Peng, L. (2011). Jackknife empirical likelihood intervals for

Spearman’s rho. North American Actuarial Journal, 15(4), 475-486.

3.1 Introduction

Statistical inference plays an important role in the modern research of actuarial sci-
ence and risk management. In this chapter, we consider new methods of interval
estimation for three different quantities of importance in risk management. We re-
fer to Jones and Zitikis [51], McNeil, Frey and Embrechts [65] and Genest, Ghoudi
and Rivest [42] for summary of the statistical inference on risk-distortion measures,

Spearman’s rtho and parametric copulas, respectively. See also the introduction in
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each of the following sections for more references.

Quantifying risk is always an important topic in actuarial science and risk man-
agement. For a given non-negative function ¢, the risk-distortion measure R(F) =
fol F~(t)y(t)dt is used to measure the corresponding risk with a loss distribution F.
It is known that the asymptotical variance of the estimation of R(F’) is very compli-
cated; see Jones and Zitikis [51] for more details about R(F'). Under some regularity
conditions (same as in [51]), we find an interval estimation for R(F’) in Section 3.2.
The functional R(F') is also known as the L-statistics (see Chapter 2 of Shao and Tu
[93]). The results also contribute to the study of the asymptotical behavior of the
L-statistics.

For dependent risks X and Y with marginal distributions F' and G respectively,
Spearman’s tho p* = 12E[(F(X) — 1/2)(G(Y') — 1/2)] is one of the most commonly-
used non-parametric measures of dependence between risks X and Y. As a measure
of dependence, p® is determined by the copula of X and Y. Although p® can be
estimated non-parametrically by a natural estimator p°®, the asymptotical variance
of p* depends on the underlining dependence structure of X and Y and is hard to
estimate. Using the jackknife empirical likelihood method, we construct an interval
estimation for R(F') without calculating the asymptotic variance in Section 3.3.

As introduced in Chapter I, the analysis of multivariate dependence structures is
often dealt with by using copulas. To fit a parametric copula to multivariate data,
a popular way is to employ the so-called pseudo maximum likelihood estimation
proposed in Genest, Ghoudi and Rivest [42]. However, the asymptotical variance of
the above estimator is unavailable except for a few classes of copulas. Under some
regularity conditions, we gave a region estimation for the parameter of the copula
family in Section 3.4 based on the score equations.

In each section, there are separate subsections of an introduction, the main results,

the simulation and proofs.
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3.2 Interval Estimation for Risk-distortion Measures

Quantifying risks is of importance in insurance. In this section, we employ the jack-
knife empirical likelihood method to construct confidence intervals for some risk mea-
sures and related quantities studied by Jones and Zitikis [51]. A simulation study
shows the advantages of the new method over the normal approximation method and

the naive bootstrap method.
3.2.1 Introduction

In life insurance and finance, quantifying risks is a very important task for pricing
an insurance product or managing a financial portfolio. Generally speaking, a risk
measure is constructed to be a mapping from a set of risks to the set of real numbers.
Some well-known risk measures include coherent risk measures (Yaari [111], Artzner
[4]), distortion risk measures, Wang’s premium principle and proportional hazards
transform risk measures; see Wang, Young and Panjer [104]; Wang [100, 101, 102];
Wirch and Hardy [110] and Necir and Meraghni [68] for references.

For a risk variable X with distribution function F', Jones and Zitikis [51] defined

a large class of risk measures associated with X as

R(F) = /0 F(t)e(t)dt, (3.1)

where F'~ denotes the generalized inverse function of F', and 9 is a nonnegative
function chosen for showing the objective opinion about the risk loading. Different
choices of 9 result in different risk measures. For example, Tail Value-at-Risk has
Y(t) = I(t > a)/(1 — ) with 0 < o < 1, the proportional hazards transform risk
measure has 9(t) = r(1 — ¢)"~! and Wang’s premium principle has 1(t) = ¢'(1 — t),
where g is an increasing convex function with derivatives over [0, 1]; see Jones and
Zitikis [51] for details. Other choices of the function v can be found in Jones and

Zitikis [53]. Jones and Zitikis [51] also introduced a related quantity to illustrate the
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right-tail, left-tail and two-sided deviations, which is defined as

R(F)
r(F) = EX)

(3.2)
Note that the general definition of distortion measures as mentioned in Wang and
Young [103] and Wirth and Hardy [110] includes the two widely used risk measures:
Value-at-Risk (VaR) and Tail Value-at-Risk (T-VaR). However the class defined by
(3.1) excludes the VaR. In this section, we focus on the statistical inference of the
risk measure and its related quantity defined in (3.1) and (3.2), respectively.

Statistical inference for R(F') and r(F') plays an important role in the applica-
tions of risk measures. Jones and Zitikis [51] proposed nonparametric estimation by
replacing F'~ and E(X) by the sample quantile function and sample mean respectively,
and derived the asymptotic normality. Therefore, confidence intervals for R(F') and
r(F) can be constructed via estimating the asymptotic variance. For comparing two
risk measures, we refer to Jones and Zitikis [52]. Jones and Zitikis [53] investigated
the nonparametric estimation of the parameter associated with distortion-based risk
measures.

Because of the complexity of the asymptotic variance of R(F) and r(F), con-
structing non-parametric confidence intervals via estimating the asymptotic variance
is usually inaccurate. In order to construct confidence intervals for R(F') and r(F)
without estimating the asymptotic variance, we investigate the possibility of applying
an empirical likelihood method in this section so as to improve the inference.

The empirical likelihood method, as introduced in Chapter I, is a nonparametric
likelihood approach for statistical inference, which has been shown to be powerful
in interval estimation and hypothesis testing. Since the risk measure R(F') and its
related quantity r(F') are non-linear functionals, we propose to employ the jackknife
empirical likelihood method to obtain interval estimation for these two quantities.
Note that for some special risk measures such as VaR and T-VaR one can simply

linearized them.so.that the profile empirical likelihood method can be employed; see
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Baysal and Staum [7] for the study of VaR and T-VaR.
The whole section is organized as follows. In Section 3.2.2, the methodologies and
main results are presented. A simulation study is given in Section 3.2.3. All proofs

are put in Section 3.2.4.
3.2.2 Methodology

Throughout we assume that the observations X;, ..., X,, are independent non-negative
random variables with continuous distribution function F(x). Put W(¢ fo
When R(F) < oo, we have t{¥U(1) — U(F(t))} — 0 as t — oco. Thus the risk measure

defined in (3.1) can be written as

= [ e - v

Define the empirical distribution function as Fy,(z) = = 3" i=1 [(X; < ). Then Jones

and Zitikis [51] proposed to estimate R(F') and r(F') by

respectively, and showed that

Via{R, — R} % N(0,0%) and va{i, —r(F)} % N(0,02) (3.3)

under some regularity conditions, where

— (T, 1), a§=L%(QF(\I!,\M—2fr<F>QF<\Ia1)+(r(F>>2QF<1,1)) (3.4)

and
@by = [ [ (P n ) = P FG)alF@)bE()dady
where a(-),b(-) are two functions on [0,1]. Based on (3.3), confidence intervals for
R(F) and r(F) can be obtained via estimating o} and 3.
An alternative way to construct confidence intervals is to employ the empirical

ince the risk measure R is non-linear, a common technique is to
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linearize the functional by introducing some link variables before applying the profile
empirical likelihood method; see the study for ROC curve (Claeskens, Jing, Peng
and Zhou [21]) and copulas (Chen, Peng and Zhao [19]). Unfortunately it remains
unknown on how to linearize R by introducing some link variables. Here we propose
to apply the jackknife empirical likelihood method developed by Jing, Yuan and Zhou
[47]. This procedure is easy to implement and is described as follows.

Define F,; = -1 5" I(X; < @) and Ry = [°(U(1) — U(F,;(t)))dt for

1t =1,...,n. Then the jackknife sample is defined as
Y;:n}?n—(n—l)f%m, i=1,...,n.

Now we apply the empirical likelihood method to the above jackknife sample. That

is, define the jackknife empirical likelihood function for § = R(F') as

L1<9) = SUP{H(”}%) :p; >0, forie=1,...,n; Zpl- =1 ZP@YZ - 9}
=1 i=1 i=1
By Lagrange multiplier technique, we have p; = n= {14+ \(Y;—0)} ! and —21log L, (0) =
25770 [ log{1 + A(Y; — 6)}, where A = \(0) satisfies

2w " (35)

=1

The following theorem shows that Wilks” Theorem holds for the proposed jackknife

empirical likelihood method.

Theorem 3.2.1. Assume that |(x)| < cx® Y1 — x)P~L, ¢/ (z) exists and | (z)| <
cx® 21 — 2)°72 for all 0 < x < 1 and some constants o > 1/2, 3 > 1/2 and
¢ > 0. Further assume E(|X;|") < oo for some v such that v > 1/(a — 1/2) and
v>1/(6—1/2). Then we have

—2log L1 (Ry) < X2 asn — oo,

where Ry denotes the true value of R and X3 denotes a chi-square distribution with

one degree of freedom.
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Remark 3.2.1. Some well-known risk measures, such as proportional hazards trans-
form risk measure, Wang’s right-tail deviation and Wang’s left-tail deviation satisfy
the assumptions of Theorem 3.2.1; see Jones and Zitikis [51]. Although the definition
of (3.1) includes the widely employed risk measure T-VaR, the assumptions in the

Theorem 3.2.1 exclude it.

Remark 3.2.2. Note that when X; is a real-valued random variable, tU(F(t)) — 0 as

t — —oo and t{¥(1) — U(F(t))} — 0 as t — oo, one can write

0

R— R(F) - /m{qfu) - \If(F(t))}dtJr/ W(F(L)) dt.

—0o0

Hence a similar jackknife empirical likelihood method can be applied.

Based on the above theorem, a confidence interval for Ry with level b can be
obtained as
L' ={R: —2log Li(R) < x7,},
where x7 , is the b-th quantile of x7.
Next we consider the related quantity r(F) = R(F)/u where p = E(X;). Alter-
natively, we consider the quantity R — 6u with 6 = r(F"). Then one can estimate this

quantity by
R, —On~* ZXi =R, — 9/ rdF,(z) = R, — 9/ (1— F,(x))dz.
i=1 0 0
As before, we define the jackknife sample as

n <Rn _ Q/OOOa:an(x)> -1 (Rm _ Q/OOOxanJ(x)) — Y, - 6X,

fori =1,...,n, where Y/s are defined as above. So the jackknife empirical likelihood

function for § = r(F) is defined as

Ly(0) = sup{[ [(nps) : pi >0, fori=1,....n; > pi=1; > pi(¥; - 6X;) =0},
i=1 ) j

The following theorem shows that Wilks’ Theorem holds for the proposed jackknife

empiricaldikelihoodanethod for r(F).
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Theorem 3.2.2. Assume the conditions in Theorem 3.2.1 hold. Further assume
E(X?) < co. Then

—2log La(ro) <, X3 asn — oo,

where ry denotes the true value of r(F).

Based on the above theorem, a confidence interval for ry with level b can be
obtained as

Iy = {r: —2log Ly(r) < X%,b}'

Remark 3.2.3. The intervals given after Theorems 3.2.1 and are two sided. Con-
structing one-sided intervals may be useful in risk management and similar jackknife

empirical likelihood confidence intervals can be obtained.
3.2.3 Simulation study

In this section we examine the finite sample behavior of the proposed jackknife empir-
ical likelihood method in terms of coverage accuracy and interval length, and compare
it with the normal approximation method and the naive bootstrap method. Interval
estimation for contaminated data is studied by Kaiser and Brazauskas [56]. We focus
on the proportional hazards transform risk measure with ¢ (s) = a(1 — s)*~! and
choose a = 0.55 and 0.85 for simulation. Since the Pareto distribution, log-normal
distribution, Weibull distribution and Gamma distribution are widely used in fitting
the losses data in insurance (see Klugman, Panjer and Willmot [57]), our simulation
study is based on these four distributions.

We draw 5,000 random samples of sizes n = 300 and 1000 from the following

distributions:
1. Pareto distribution Fj(z;0) =1 — 279 for x > 1;

2. Log-normal distribution Fy(x;6,,65) = ®((logx —6,)/63) for x > 0, where ®(x)

denotes the standard normal distribution function;
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3. Weibull distribution F3(z;6,60y) = 1 — exp{—(x/6,)%} for z > 0;

4. Gamma distribution

01

v
Fy(x;0,,0 :/ —2_s""lexp{—bystds for x> 0.
ai0.00) = [ " exp{~tas)

For calculating the proposed jackknife empirical likelihood intervals (JELCI) for
both R(F) and r(F), we use the R package >emplik’. For calculating the confidence
intervals for R(F') based on the normal approximation method (NACI), we use the
variance estimation in Jones and Zitikis [51]. For computing the naive bootstrap con-
fidence intervals for r(F') (NBCI), we draw 5,000 bootstrap samples with replacement
from each random sample X,..., X,,. Empirical coverage probabilities are reported
in Tables 3.1 and 3.2 for these three confidence intervals with levels 0.9, 0.95 and
0.99. Tables 3.3 and 3.4 report the average interval lengths for these intervals. From
these tables, we conclude that the proposed jackknife empirical likelihood method
gives more accurate coverage probability than the other two methods especially for
the case of n = 300. On the other hand, the new method has a bigger interval length

than the other methods for most cases.
3.2.4 Proofs

Throughout we put U; = F(X;) for i = 1,...,n, G,(t) = nt Y0 | I(U; < t) and
Gni=(n—1)" > iz LU <t)fori=1,...,n. Since F'is continuous, Uy, ..., U,
are independent and uniformly distributed over (0,1). Without loss of generality we
assume no ties in Uy, ..., U,, and let U, ; < --- < U,, denote the order statistics of
Uy,...,U,. We also use C' to denote a generic constant which may be different in
different places.

Under the conditions of Theorem 3.2.1, we first list some facts which will be

employed in the proofs. We assume § < « throughout since proofs for the case

of 3 > a are exactly the same. Therefore we have [ (x)| < cz® (1 — )%t and
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Table 3.1: Coverage probabilities for R(F') are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the normal approx-
imation method (NACI).

(n,a, F) JELCI NACI JELCI NACI JELCI NACI
level 0.9 level 0.9 | level 0.95 level 0.95 | level 0.99 level 0.99

(300, 0.55, F1(;4)) 0.6316 0.4408 0.7096 0.4978 0.8348 0.6082
(300, 0.85, F1(;4)) 0.8618 0.8500 0.9202 0.9020 0.9768 0.9512
(1000, 0.55, F1(;4)) 0.6160 0.4438 0.7084 0.5032 0.8402 0.6108
(1000, 0.85, F1(;4)) 0.8702 0.8642 0.9330 0.9240 0.9870 0.9738
(300, 0.55, F2(;0,1)) 0.6906 0.5376 0.7692 0.6020 0.8808 0.7012
(300, 0.85, F2(;0,1)) 0.8664 0.8560 0.9270 0.9104 0.9802 0.9590
(1000, 0.55, F»(;0,1)) 0.7206 0.5870 0.7968 0.6522 0.8972 0.7556
(1000, 0.85, F2(;0,1)) 0.8810 0.8698 0.9332 0.9236 0.9828 0.9750
(300, 0.55, F5(;4,1)) 0.8998 0.8798 0.9496 0.9344 0.9872 0.9802
(300,0.85, F3(;4,1)) | 0.9080 0.9066 0.9556 0.9534 0.9890 0.9884
(1000, 0.55, F3(;4,1)) 0.9032 0.8918 0.9530 0.9462 0.9912 0.9876
(1000, 0.85, F3(;4,1)) 0.9094 0.9068 0.9558 0.9560 0.9926 0.9932
(300, 0.55, F4(;4,1)) 0.8568 0.8024 0.9152 0.8718 0.9774 0.9460
(300,0.85, F4(;4,1)) 0.8934 0.8842 0.9458 0.9402 0.9898 0.9870
(1000, 0.55, F4(;4,1)) 0.8728 0.8430 0.9336 0.9060 0.9844 0.9696
(1000, 0.85, F4(;4,1)) 0.9010 0.8988 0.9514 0.9490 0.9904 0.9900

Table 3.2: Coverage probabilities for r(F') are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the naive bootstrap

method (NBCI).

(n,a, F) JELCI NBCI JELCI NBCI JELCI NBCI
level 0.9 level 0.9 | level 0.95 level 0.95 | level 0.99 level 0.99
(300, 0.55, F1(;4)) 0.5002 0.3682 0.5802 0.4060 0.6990 0.4858
(300, 0.85, F1(;4)) 0.7310 0.6782 0.8026 0.7366 0.8980 0.8128
(1000, 0.55, F1(;4)) 0.5550 0.4342 0.6344 0.4840 0.7610 0.5600
(1000, 0.85, F1(;4)) 0.7924 0.7536 0.8646 0.8124 0.9482 0.8830
(300, 0.55, F2(;0,1)) 0.5432 0.4242 0.6098 0.4744 0.7184 0.5628
(300, 0.85, F2(;0,1)) 0.7116 0.6546 0.7770 0.7168 0.8762 0.8084
(1000, 0.55, F»(;0,1)) 0.6102 0.5296 0.6850 0.5854 0.7908 0.6698
(1000, 0.85, F2(;0,1)) 0.7670 0.7290 0.8384 0.7928 0.9202 0.8726
(300, 0.55, F53(;4,1)) 0.8554 0.8380 0.9118 0.8936 0.9736 0.9608
(300, 0.85, F3(;4,1)) 0.8922 0.8798 0.9444 0.9320 0.9850 0.9802
(1000, 0.55, F3(;4,1)) 0.8646 0.8538 0.9192 0.9130 0.9776 0.9762
(1000, 0.85, F3(;4,1)) 0.8850 0.8796 0.9390 0.9330 0.9886 0.9842
(300, 0.55, F4(;4,1)) 0.7740 0.7200 0.8452 0.7924 0.9282 0.8820
(300,0.85, F4(;4,1)) 0.8560 0.8346 0.9180 0.8960 0.9738 0.9598
(1000, 0.55, F4(;4,1)) 0.8200 0.7944 0.8876 0.8584 0.9538 0.9326
(1000, 0.85, F4(;4,1)) 0.8828 0.8758 0.9342 0.9254 0.9844 0.9780
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Table 3.3: Average interval lengths for R(F') are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the normal approx-
imation method (NACI).

(n,a, F) JELCI NACI JELCI NACI JELCI NACI
level 0.9 level 0.9 | level 0.95 level 0.95 | level 0.99 level 0.99

(300, 0.55, F1(;4)) 0.3336 0.2416 0.4038 0.2879 0.5409 0.3784
(300,0.85, F1 (;4)) 0.1217  0.1170 0.1485 0.1394 0.2041 0.1832
(1000, 0.55, F1(;4)) 0.2405 0.1762 0.2939 0.2100 0.4028 0.2760
(1000, 0.85, F1(;4)) 0.0678 0.0684 0.0830 0.0815 0.1142 0.1071
(300, 0.55, F2(;0,1)) 1.1940 1.1396 1.3265 1.3580 1.5084 1.7847
(300, 0.85, F2(;0,1)) 0.5835 0.5447 0.7034 0.6490 0.9342 0.8530
(1000, 0.55, F»(;0,1)) 0.9583 0.8167 1.0952 0.9731 1.3048 1.2789
(1000, 0.85, F2(;0,1)) 0.3319 0.3165 0.4016 0.3771 0.5446 0.4956
(300, 0.55, F5(;4,1)) 0.0996 0.0968 0.1209 0.1154 0.1643 0.1516
(300, 0.85, F3(;4,1)) 0.0911 0.0956 0.1097 0.1139 0.1461 0.1497
(1000, 0.55, F3(;4,1)) 0.0520 0.0545 0.0633 0.0649 0.0862 0.0853
(1000, 0.85, F3(;4,1)) 0.0498 0.0525 0.0596 0.0626 0.0788 0.0822
(300, 0.55, F4(;4,1)) 0.3132 0.2689 0.3809 0.3204 0.5221 0.4211
(300,0.85, F4(;4,1)) 0.2043 0.2058 0.2454 0.2452 0.3273 0.3223
(1000, 0.55, F4(;4,1)) 0.1756 0.1582 0.2134 0.1885 0.2921 0.2477
(1000, 0.85, F4(;4,1)) 0.1092 0.1135 0.1314 0.1353 0.1750 0.1778

Table 3.4: Average interval lengths for r(F') are reported for the intervals based on
the proposed jackknife empirical likelihood method (JELCI) and the naive bootstrap

method (NBCI).

(n,a, F) JELCI NBCI JELCI NBCI JELCI NBCI
level 0.9 level 0.9 | level 0.95 level 0.95 | level 0.99 level 0.99
(300, 0.55, F1(;4)) 0.1342 0.1273 0.1504 0.1445 0.1739 0.1761
(300, 0.85, F1(;4)) 0.0268 0.0226 0.0326 0.0262 0.0445 0.0330
(1000, 0.55, F1(;4)) 0.1218 0.1084 0.1387 0.1242 0.1650 0.1539
(1000, 0.85, F1(;4)) 0.0182 0.0160 0.0220 0.0187 0.0307 0.0239
(300, 0.55, F2(;0,1)) 0.4298 0.3964 0.4838 0.4509 0.5661 0.5488
(300, 0.85, F2(;0,1)) 0.0743 0.0634 0.0881 0.0732 0.1134 0.0910
(1000, 0.55, F»(;0,1)) 0.3922 0.3423 0.4468 0.3923 0.5342 0.4827
(1000, 0.85, F2(;0,1)) 0.0535 0.0461 0.0646 0.0538 0.0864 0.0682
(300, 0.55, F53(;4,1)) 0.0277 0.0249 0.0337 0.0296 0.0460 0.0387
(300,0.85, F3(;4,1)) 0.0059 0.0061 0.0072 0.0073 0.0097 0.0096
(1000, 0.55, F3(;4,1)) 0.0154 0.0144 0.0187 0.0171 0.0256 0.0224
(1000, 0.85, F3(;4,1)) 0.0030 0.0034 0.0036 0.0041 0.0049 0.0053
(300, 0.55, F4(;4,1)) 0.0851 0.0689 0.1019 0.0810 0.1322 0.1038
(300,0.85, F4(;4,1)) 0.0152 0.0141 0.0185 0.0167 0.0253 0.0217
(1000, 0.55, F4(;4,1)) 0.0532 0.0442 0.0649 0.0521 0.0890 0.0673
(1000, 0.85, F4(;4,1)) 0.0084 0.0083 0.0102 0.0098 0.0140 0.0128
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1Y (2)| < cx®2(1 — 2)P~2 for all 0 < x < 1. Since E|